SU(6) (physics)

Last updated

The Lie group SU(6) occurs in both the Standard Model and in some grand unified theories.

Contents

In the Standard Model

SU(6) is an approximate symmetry that classifies lighter baryons and mesons, explaining many patterns in the particle zoo. It combines SU(3) flavour and SU(2) spin. Quarks u,d,s, with spin up and down belong to the fundamental representation 6. Mesons belong to the 35 representation and baryons to the 56 representation obtained from the product quark-antiquark and quark-quark-quark, respectively.[ citation needed ]

In Grand Unified Theories


The SU(6) grand unified theory includes the Georgi–Glashow SU(5) gauge group.

The fermionic matter content of this model comes in three generations (copies) of

as SU(6) representations.

This gauge group is broken down to the Georgi–Glashow model by a pair of 6H/ Higgs fields.

The fermions decompose as

The Yukawa coupling causes 5 and a SU(5)-rep of fermions to pair up and acquire GUT scale masses for each generation.[ citation needed ]

An adjoint[ clarification needed ] Higgs 35H breaks the model down further to the standard model.[ citation needed ]

Recently, a new type of grand unified theory based on SU(6) group has been proposed to realize a unification of strong and electroweak interactions. [1] The work provides a complete form of 35 generators in SU(6) group.

Related Research Articles

Grand Unified Theory Particle physics model

A Grand Unified Theory (GUT) is a model in particle physics in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this unified force has not been directly observed, the many GUT models theorize its existence. If unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universe in which these three fundamental interactions were not yet distinct.

Proton decay Hypothetical decay process of a nucleon (proton or neutron) into non-nucleons (anything else)

In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least 1.67×1034 years.

Standard Model Theory of particle physics

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe, as well as classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists around the world, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, confirmation of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

Georgi–Glashow model

In particle physics, the Georgi–Glashow model is a particular grand unified theory (GUT) proposed by Howard Georgi and Sheldon Glashow in 1974. In this model the standard model gauge groups SU(3) × SU(2) × U(1) are combined into a single simple gauge group SU(5). The unified group SU(5) is then thought to be spontaneously broken into the standard model subgroup below some very high energy scale called the grand unification scale.

In physics, the Pati–Salam model is a Grand Unification Theory proposed in 1974 by nobel laureate Abdus Salam and Jogesh Pati. The unification is based on there being four quark color charges, dubbed red, green, blue and violet, instead of the conventional three, with the new "violet" quark being identified with the leptons. The model also has Left–right symmetry and predicts the existence of a high energy right handed weak interaction with heavy W' and Z' bosons.

Technicolor (physics)

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

The Flipped SU(5) model is a grand unified theory (GUT) first contemplated by Stephen Barr in 1982, and by Dimitri Nanopoulos and others in 1984. Ignatios Antoniadis, John Ellis, John Hagelin, and Nanopoulos developed the supersymmetric flipped SU(5), derived from the deeper-level superstring.

In physics, the trinification model is a GUT theory.

Gauge boson

In particle physics, a gauge boson is a force carrier, a bosonic particle that carries any of the fundamental interactions of nature, commonly called forces. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of gauge bosons—usually as virtual particles.

Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with phenomenology". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner yet undiscovered. If we find these superparticles, it equates to discovering such particles as dark matter, could provide evidence for grand unification, and provide hints as to whether string theory describes nature. The failure to find evidence for supersymmetry using the Large Hadron Collider suggests a leaning to abandon it.

A chiral phenomenon is one that is not identical to its mirror image. The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry.

Eightfold way (physics) Classification scheme for hadrons (matter experiencing the strong force) that led to the quark model

In physics, the eightfold way is an organizational scheme for a class of subatomic particles known as hadrons that led to the development of the quark model. American physicist Murray Gell-Mann and Israeli physicist Yuval Ne'eman both proposed the idea in 1961. The name comes from Gell-Mann's 1961 paper and is an allusion to the Noble Eightfold Path of Buddhism.

In particle physics, the doublet–triplet (splitting) problem is a problem of some Grand Unified Theories, such as SU(5), SO(10), . Grand unified theories predict Higgs bosons arise from representations of the unified group that contain other states, in particular, states that are triplets of color. The primary problem with these color triplet Higgs is that they can mediate proton decay in supersymmetric theories that are only suppressed by two powers of GUT scale. In addition to mediating proton decay, they alter gauge coupling unification. The doublet–triplet problem is the question 'what keeps the doublets light while the triplets are heavy?'

SO(10)

In particle physics, SO(10) refers to a grand unified theory (GUT) based on the spin group Spin(10). The shortened name SO(10) is conventional among physicists, and derives from the Lie group SO(10), which is a special orthogonal group that is double covered by Spin(10).

Quark model Classification scheme of hadrons

In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that were being discovered starting in the 1950s and continuing through the 1960s. It received experimental verification beginning in the late 1960s and is a valid effective classification of them to date. The model was independently proposed by physicists Murray Gell-Mann, who dubbed them "quarks" in a concise paper, and George Zweig, who suggested "aces" in a longer manuscript. André Petermann also touched upon the central ideas from 1963 to 1965, without as much quantitative substantiation. Today, the model has essentially been absorbed as a component of the established quantum field theory of strong and electroweak particle interactions, dubbed the Standard Model.

Mathematical formulation of the Standard Model The mathematics of a particle physics model

This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as containing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs particle.

Flipped SO(10) is a grand unified theory which is to standard SO(10) as flipped SU(5) is to SU(5).

In particle physics, chiral symmetry breaking is the spontaneous symmetry breaking of a chiral symmetry – usually by a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction. Yoichiro Nambu was awarded the 2008 Nobel prize in physics for describing this phenomenon.

In particle physics, the X and Y bosons are hypothetical elementary particles analogous to the W and Z bosons, but corresponding to a new type of force predicted by the Georgi–Glashow model, a grand unified theory.

In particle physics, composite Higgs models (CHM) are speculative extensions of the Standard Model (SM) where the Higgs boson is a bound state of new strong interactions. These scenarios are models for physics beyond the SM presently tested at the Large Hadron Collider (LHC) in Geneva.

References

  1. Hartanto, A.; Handoko, L. T. (2005). "Grand unified theory based on the SU(6) symmetry". Physical Review D. 71 (9): 095013. arXiv: hep-ph/0504280 . Bibcode:2005PhRvD..71i5013H. doi:10.1103/physrevd.71.095013. S2CID   12701177.