Particle zoo

Last updated

In particle physics, the term particle zoo [1] [2] is used colloquially to describe the relatively extensive list of known subatomic particles by comparison to the variety of species in a zoo.

Contents

In the history of particle physics, the topic of particles was considered to be particularly confusing in the late 1960s. Before the discovery of quarks, hundreds of strongly interacting particles (hadrons) were known and believed to be distinct elementary particles. It was later discovered that they were not elementary particles, but rather composites of quarks. The set of particles believed today to be elementary is known as the Standard Model and includes quarks, bosons and leptons.

The term "subnuclear zoo" was coined or popularized by Robert Oppenheimer in 1956 at the VI Rochester International Conference on High Energy Physics. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Elementary particle</span> Subatomic particle having no substructure

In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number: electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles.

<span class="mw-page-title-main">Hadron</span> Composite subatomic particle

In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules, which are held together by the electric force. Most of the mass of ordinary matter comes from two hadrons: the proton and the neutron, while most of the mass of the protons and neutrons is in turn due to the binding energy of their constituent quarks, due to the strong force.

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.

<span class="mw-page-title-main">Quark</span> Elementary particle, main constituent of matter

A quark is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as color confinement, quarks are never found in isolation; they can be found only within hadrons, which include baryons and mesons, or in quark–gluon plasmas. For this reason, much of what is known about quarks has been drawn from observations of hadrons.

A timeline of atomic and subatomic physics, including particle physics.

The strange quark or s quark is the third lightest of all quarks, a type of elementary particle. Strange quarks are found in subatomic particles called hadrons. Examples of hadrons containing strange quarks include kaons, strange D mesons, Sigma baryons, and other strange particles.

<span class="mw-page-title-main">Subatomic particle</span> Particle smaller than an atom

In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles, or an elementary particle, which is not composed of other particles. Particle physics and nuclear physics study these particles and how they interact. Most force-carrying particles like photons or gluons are called bosons and, although they have quanta of energy, do not have rest mass or discrete diameters and are unlike the former particles that have rest mass and cannot overlap or combine which are called fermions. The W and Z bosons, however, are an exception to this rule and have relatively large rest masses at approximately 80 GeV and 90 GeV respectively.

<span class="mw-page-title-main">Charm quark</span> Type of quark

The charm quark, charmed quark, or c quark is an elementary particle found in composite subatomic particles called hadrons such as the J/psi meson and the charmed baryons created in particle accelerator collisions. Several bosons, including the W and Z bosons and the Higgs boson, can decay into charm quarks. All charm quarks carry charm, a quantum number. This second-generation particle is the third-most-massive quark, with a mass of 1.27±0.02 GeV/c2 as measured in 2022, and a charge of +2/3 e.

<span class="mw-page-title-main">J/psi meson</span> Subatomic particle made of a charm quark and antiquark

The
J/ψ
(J/psi) meson is a subatomic particle, a flavor-neutral meson consisting of a charm quark and a charm antiquark. Mesons formed by a bound state of a charm quark and a charm anti-quark are generally known as "charmonium" or psions. The
J/ψ
is the most common form of charmonium, due to its spin of 1 and its low rest mass. The
J/ψ
has a rest mass of 3.0969 GeV/c2, just above that of the
η
c
, and a mean lifetime of 7.2×10−21 s. This lifetime was about a thousand times longer than expected.

<span class="mw-page-title-main">Yoichiro Nambu</span> Japanese-American nobel-winning physicist

Yoichiro Nambu was a Japanese-American physicist and professor at the University of Chicago.

<span class="mw-page-title-main">Eightfold way (physics)</span> Classification scheme for hadrons

In physics, the eightfold way is an organizational scheme for a class of subatomic particles known as hadrons that led to the development of the quark model. Both the American physicist Murray Gell-Mann and the Israeli physicist Yuval Ne'eman independently and simultaneously proposed the idea in 1961. The name comes from Gell-Mann's (1961) paper and is an allusion to the Noble Eightfold Path of Buddhism.

In particle physics, preons are hypothetical point particles, conceived of as sub-components of quarks and leptons. The word was coined by Jogesh Pati and Abdus Salam, in 1974. Interest in preon models peaked in the 1980s but has slowed, as the Standard Model of particle physics continues to describe physics mostly successfully, and no direct experimental evidence for lepton and quark compositeness has been found. Preons come in four varieties: plus, anti-plus, zero, and anti-zero. W bosons have six preons, and quarks and leptons have only three.

<span class="mw-page-title-main">Lambda baryon</span> Baryon made of specific quark combinations

The lambda baryons (Λ) are a family of subatomic hadron particles containing one up quark, one down quark, and a third quark from a higher flavour generation, in a combination where the quantum wave function changes sign upon the flavour of any two quarks being swapped. They are thus baryons, with total isospin of 0, and have either neutral electric charge or the elementary charge +1.

The sigma baryons are a family of subatomic hadron particles which have two quarks from the first flavour generation, and a third quark from a higher flavour generation, in a combination where the wavefunction sign remains constant when any two quark flavours are swapped. They are thus baryons, with total isospin of 1, and can either be neutral or have an elementary charge of +2, +1, 0, or −1. They are closely related to the lambda baryons, which differ only in the wavefunction's behaviour upon flavour exchange.

<span class="mw-page-title-main">Matter</span> Something that has mass and volume

In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles, and in everyday as well as scientific usage, matter generally includes atoms and anything made up of them, and any particles that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or heat. Matter exists in various states. These include classical everyday phases such as solid, liquid, and gas – for example water exists as ice, liquid water, and gaseous steam – but other states are possible, including plasma, Bose–Einstein condensates, fermionic condensates, and quark–gluon plasma.

<span class="mw-page-title-main">Boson</span> Class of subatomic particle

In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value. Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spin. Every observed subatomic particle is either a boson or a fermion. Paul Dirac coined the name boson to commemorate the contribution of Satyendra Nath Bose, an Indian physicist.

Lev Borisovich Okun was a Soviet theoretical physicist. He is known for his contributions to particle physics and quantum chromodynamics. He coined the term hadron.

<span class="mw-page-title-main">Particle</span> Small localized object

In the physical sciences, a particle is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from subatomic particles like the electron, to microscopic particles like atoms and molecules, to macroscopic particles like powders and other granular materials. Particles can also be used to create scientific models of even larger objects depending on their density, such as humans moving in a crowd or celestial bodies in motion.

<span class="mw-page-title-main">History of subatomic physics</span> Chronological listing of experiments and discoveries

The idea that matter consists of smaller particles and that there exists a limited number of sorts of primary, smallest particles in nature has existed in natural philosophy at least since the 6th century BC. Such ideas gained physical credibility beginning in the 19th century, but the concept of "elementary particle" underwent some changes in its meaning: notably, modern physics no longer deems elementary particles indestructible. Even elementary particles can decay or collide destructively; they can cease to exist and create (other) particles in result.

References

  1. Nuclear Technology. By Joseph A. Angelo. P. 12.
  2. Jacques Vanier. The Universe: A Challenge to the Mind. World Scientific, 2010. P. 548–551.
  3. George Johnson (1999). Strange Beauty: Murray Gell-Mann and the Revolution in Twentieth-Century Physics, p. 755, footnote 108: Oppenheimer coined the term "subnuclear zoo" in a public lecture at the Rochester VI conference; Sec VIII, p 1 of the proceedings.

Further reading