Safe mode in spacecraft

Last updated

Safe mode is an operating mode of a modern uncrewed spacecraft during which all non-essential systems are shut down and only essential functions such as thermal management, radio reception and attitude control are active. [1]

Contents

Safe mode is entered automatically upon the detection of a predefined operating condition or event that may indicate loss of control or damage to the spacecraft. Usually the trigger event is a system failure or detection of operating conditions considered dangerously out of the normal range. Cosmic rays penetrating spacecraft electrical systems can create false signals or commands and thus cause a trigger event. The central processor electronics are especially prone to such events. [2] Another trigger is the lack of a received command within a given time window. Lack of received commands can be caused by hardware failures or mis-programming of the spacecraft, as in the case of the Viking 1 lander.

The process of entering safe mode, sometimes referred to as safing, [3] involves a number of immediate physical actions taken to prevent damage or complete loss. Power is removed from non-essential subsystems. Regaining attitude control, if lost, is the highest priority because it is necessary to maintain thermal balance and proper illumination of the solar panels. [1] A tumbling or cartwheeling spacecraft can quickly roast, freeze or exhaust its battery power and be lost forever. [4]

In safe mode

While in safe mode the preservation of the spacecraft is the highest priority. Typically all non-essential systems, such as science instruments, are shut down. The spacecraft attempts to maintain orientation with respect to the Sun for illumination of solar panels and for thermal management. The spacecraft then awaits radio commands from its mission control center monitoring for signals on its low-gain omnidirectional antenna. Exactly what happens while in safe mode is dependent on the spacecraft design and its mission. [2]

Recovery from safe mode involves reestablishing communication between the spacecraft and mission control, downloading any diagnostic data and sequencing power back on to the various subsystems to resume the mission. The recovery time can be anywhere from a few hours to days or weeks depending on the difficulty in reestablishing communications, conditions found on the spacecraft, distance to the spacecraft and the nature of the mission. [5]

behavior

was on sol 451. [6]

Modern incidents

2005
2007
2009
2014
2015
2016
2018
2021

Incidents resulting in spacecraft loss or near loss

Related Research Articles

<i>2001 Mars Odyssey</i> NASA orbiter for geology and hydrology

2001 Mars Odyssey is a robotic spacecraft orbiting the planet Mars. The project was developed by NASA, and contracted out to Lockheed Martin, with an expected cost for the entire mission of US$297 million. Its mission is to use spectrometers and a thermal imager to detect evidence of past or present water and ice, as well as study the planet's geology and radiation environment. The data Odyssey obtains is intended to help answer the question of whether life once existed on Mars and create a risk-assessment of the radiation that future astronauts on Mars might experience. It also acts as a relay for communications between the Curiosity rover, and previously the Mars Exploration Rovers and Phoenix lander, to Earth. The mission was named as a tribute to Arthur C. Clarke, evoking the name of his and Stanley Kubrick's 1968 film 2001: A Space Odyssey.

<span class="mw-page-title-main">Mariner program</span> NASA space program from 1962 to 1973

The Mariner program was conducted by the American space agency NASA to explore other planets. Between 1962 and late 1973, NASA's Jet Propulsion Laboratory (JPL) designed and built 10 robotic interplanetary probes named Mariner to explore the inner Solar System – visiting the planets Venus, Mars and Mercury for the first time, and returning to Venus and Mars for additional close observations.

<span class="mw-page-title-main">Mariner 4</span> Robotic spacecraft sent by NASA to Mars (1964–67)

Mariner 4 was the fourth in a series of spacecraft intended for planetary exploration in a flyby mode. It was designed to conduct closeup scientific observations of Mars and to transmit these observations to Earth. Launched on November 28, 1964, Mariner 4 performed the first successful flyby of the planet Mars, returning the first close-up pictures of the Martian surface. It captured the first images of another planet ever returned from deep space; their depiction of a cratered, dead planet largely changed the scientific community's view of life on Mars. Other mission objectives were to perform field and particle measurements in interplanetary space in the vicinity of Mars and to provide experience in and knowledge of the engineering capabilities for interplanetary flights of long duration. Initially expected to remain in space for eight months, Mariner 4's mission lasted about three years in solar orbit. On December 21, 1967, communications with Mariner 4 were terminated.

<span class="mw-page-title-main">Space exploration</span> Exploration of space, planets, and moons

Space exploration is the use of astronomy and space technology to explore outer space. While the exploration of space is currently carried out mainly by astronomers with telescopes, its physical exploration is conducted both by uncrewed robotic space probes and human spaceflight. Space exploration, like its classical form astronomy, is one of the main sources for space science.

<span class="mw-page-title-main">Mariner 9</span> Successful 1971 Mars robotic spacecraft

Mariner 9 was a robotic spacecraft that contributed greatly to the exploration of Mars and was part of the NASA Mariner program. Mariner 9 was launched toward Mars on May 30, 1971, from LC-36B at Cape Canaveral Air Force Station, Florida, and reached the planet on November 14 of the same year, becoming the first spacecraft to orbit another planet – only narrowly beating the Soviet probes Mars 2 and Mars 3, which both arrived at Mars only weeks later.

<span class="mw-page-title-main">Mariner 6 and 7</span> Robotic spacecraft sent to Mars in 1969

Mariner 6 and Mariner 7 were two uncrewed NASA robotic spacecraft that completed the first dual mission to Mars in 1969 as part of NASA's wider Mariner program. Mariner 6 was launched from Launch Complex 36B at Cape Canaveral Air Force Station and Mariner 7 from Launch Complex 36A. The two craft flew over the equator and south polar regions, analyzing the atmosphere and the surface with remote sensors, and recording and relaying hundreds of pictures. The mission's goals were to study the surface and atmosphere of Mars during close flybys, in order to establish the basis for future investigations, particularly those relevant to the search for extraterrestrial life, and to demonstrate and develop technologies required for future Mars missions. Mariner 6 also had the objective of providing experience and data which would be useful in programming the Mariner 7 encounter five days later.

<i>Mars Express</i> European Mars orbiter

Mars Express is a space exploration mission being conducted by the European Space Agency (ESA). The Mars Express mission is exploring the planet Mars, and is the first planetary mission attempted by the agency. "Express" originally referred to the speed and efficiency with which the spacecraft was designed and built. However, "Express" also describes the spacecraft's relatively short interplanetary voyage, a result of being launched when the orbits of Earth and Mars brought them closer than they had been in about 60,000 years.

<span class="mw-page-title-main">Uncrewed spacecraft</span> Spacecraft without people on board

Uncrewed spacecraft or robotic spacecraft are spacecraft without people on board. Uncrewed spacecraft may have varying levels of autonomy from human input, such as remote control, or remote guidance. They may also be autonomous, in which they have a pre-programmed list of operations that will be executed unless otherwise instructed. A robotic spacecraft for scientific measurements is often called a space probe or space observatory.

<i>Opportunity</i> (rover) NASA Mars rover deployed in 2004

Opportunity, also known as MER-B or MER-1, is a robotic rover that was active on Mars from 2004 until 2018. Opportunity was operational on Mars for 5111 sols. Launched on July 7, 2003, as part of NASA's Mars Exploration Rover program, it landed in Meridiani Planum on January 25, 2004, three weeks after its twin, Spirit (MER-A), touched down on the other side of the planet. With a planned 90-sol duration of activity, Spirit functioned until it got stuck in 2009 and ceased communications in 2010, while Opportunity was able to stay operational for 5111 sols after landing, maintaining its power and key systems through continual recharging of its batteries using solar power, and hibernating during events such as dust storms to save power. This careful operation allowed Opportunity to operate for 57 times its designed lifespan, exceeding the initial plan by 14 years, 47 days. By June 10, 2018, when it last contacted NASA, the rover had traveled a distance of 45.16 kilometers.

<span class="mw-page-title-main">Exploration of Mars</span>

The planet Mars has been explored remotely by spacecraft. Probes sent from Earth, beginning in the late 20th century, have yielded a large increase in knowledge about the Martian system, focused primarily on understanding its geology and habitability potential. Engineering interplanetary journeys is complicated and the exploration of Mars has experienced a high failure rate, especially the early attempts. Roughly sixty percent of all spacecraft destined for Mars failed before completing their missions, with some failing before their observations could even begin. Some missions have been met with unexpected success, such as the twin Mars Exploration Rovers, Spirit and Opportunity, which operated for years beyond their specification.

<i>Mars Reconnaissance Orbiter</i> NASA spacecraft active since 2005

The Mars Reconnaissance Orbiter (MRO) is a spacecraft designed to search for the existence of water on Mars and provide support for missions to Mars, as part of NASA's Mars Exploration Program. It was launched from Cape Canaveral on August 12, 2005, at 11:43 UTC and reached Mars on March 10, 2006, at 21:24 UTC. In November 2006, after six months of aerobraking, it entered its final science orbit and began its primary science phase.

<i>Dawn</i> (spacecraft) NASA mission to study main-belt asteroids via a robotic probe (2007–18)

Dawn is a retired space probe that was launched by NASA in September 2007 with the mission of studying two of the three known protoplanets of the asteroid belt: Vesta and Ceres. In the fulfillment of that mission—the ninth in NASA's Discovery Program—Dawn entered orbit around Vesta on July 16, 2011, and completed a 14-month survey mission before leaving for Ceres in late 2012. It entered orbit around Ceres on March 6, 2015. In 2017, NASA announced that the planned nine-year mission would be extended until the probe's hydrazine fuel supply was depleted. On November 1, 2018, NASA announced that Dawn had depleted its hydrazine, and the mission was ended. The derelict probe remains in a stable orbit around Ceres.

<i>Juno</i> (spacecraft) NASA space probe orbiting the planet Jupiter

Juno is a NASA space probe orbiting the planet Jupiter. It was built by Lockheed Martin and is operated by NASA's Jet Propulsion Laboratory. The spacecraft was launched from Cape Canaveral Air Force Station on August 5, 2011 UTC, as part of the New Frontiers program. Juno entered a polar orbit of Jupiter on July 5, 2016, UTC, to begin a scientific investigation of the planet. After completing its mission, Juno was originally planned to be intentionally deorbited into Jupiter's atmosphere, but has since been approved to continue orbiting until contact is lost with the spacecraft.

<span class="mw-page-title-main">Timeline of Mars Reconnaissance Orbiter</span> Timeline of important events in the history of the Mars Reconnaissance Orbiter

Timeline for the Mars Reconnaissance Orbiter (MRO) lists the significant events of the launch, aerobraking, and transition phases as well as subsequent significant operational mission events; by date and brief description.

<span class="mw-page-title-main">Mars Cube One</span> 2018 Mars flyby mission

Mars Cube One was a Mars flyby mission launched on 5 May 2018 alongside NASA's InSight Mars lander. It consisted of two nanospacecraft, MarCO-A and MarCO-B, that provided real-time communications to Earth for InSight during its entry, descent, and landing (EDL) on 26 November 2018 - when InSight was out of line of sight from the Earth. Both spacecraft were 6U CubeSats designed to test miniaturized communications and navigation technologies. These were the first CubeSats to operate beyond Earth orbit, and aside from telecommunications they also tested CubeSats' endurance in deep space. On 5 February 2019, NASA reported that both the CubeSats had gone silent by 5 January 2019, and are unlikely to be heard from again. In August 2019, the CubeSats were honored for their role in the successful landing of the InSight lander on Mars.

<span class="mw-page-title-main">Lunar Flashlight</span> Lunar orbiter by NASA

Lunar Flashlight was a low-cost CubeSat lunar orbiter mission to explore, locate, and estimate size and composition of water ice deposits on the Moon for future exploitation by robots or humans.

References

  1. 1 2 Bokulic, R. S.; Jensen, J. R. (November–December 2000). "Recovery of a Spacecraft from Sun-Safe Mode Using a Fanbeam Antenna". Spacecraft and Rockets. 37 (6): 822. Bibcode:2000JSpRo..37..822B. doi:10.2514/2.3640.
  2. 1 2 Bayer, Todd J. (18–20 September 2007). "Planning for the Un-plannable: Redundancy, Fault Protection, Contingency Planning and Anomaly Response for the Mars Reconnaissance Orbiter Mission". AIAA SPACE 2007 Conference & Exposition. Retrieved January 28, 2023.
  3. 1 2 Cassini Spacecraft Safing Archived 2009-07-09 at the Wayback Machine
  4. 1 2 "SOHO Mission Interruption Preliminary Status and Background Report". July 15, 1998. Retrieved 2006-08-17.
  5. 1 2 "The PI's Perspective: Trip Report". NASA/Johns Hopkins University/APL/New Horizons Mission. 2007-03-26. Retrieved 2016-10-19.
  6. 1 2 "Spirit Updates 2005". NASA/JPL. Archived from the original on 2007-08-23. Retrieved 2009-08-18.
  7. "Spirit Updates 2006". NASA/JPL. Archived from the original on 2007-08-23. Retrieved 2009-08-18.
  8. "Spirit Updates 2007". NASA/JPL. Archived from the original on 2009-04-13. Retrieved 2009-08-18.
  9. Tariq Malik (August 8, 2009). "Powerful Mars Orbiter Switches to Backup Computer". SPACE.com. Retrieved 2009-08-18.
  10. "Orbiter in Safe Mode Increases Communication Rate". NASA/JPL. August 28, 2009. Archived from the original on 2011-06-11. Retrieved 2009-08-31.
  11. "Spacecraft Out of Safe Mode". NASA/JPL. December 8, 2009. Archived from the original on 2011-06-11. Retrieved 2009-12-23.
  12. "2009 July 7 Mission Manager Update". NASA. 2009-07-07. Archived from the original on 2009-06-11. Retrieved 2009-07-08.
  13. "Dawn Receives Gravity Assist from Mars". NASA/JPL. 2009-02-28. Archived from the original on 2004-10-16. Retrieved 2009-08-04.
  14. "MESSENGER Gains Critical Gravity Assist for Mercury Orbital Observations". MESSENGER Mission News. September 30, 2009. Archived from the original on May 10, 2013. Retrieved 2009-09-30.
  15. Brumfield, Ben; Carter, Chelsea J. (18 November 2014). "On a comet 10 years away, Philae conks out, maybe for good". CNN . Retrieved 28 December 2014.
  16. Gipson, Lillian (6 July 2015). "NASA's New Horizons Plans July 7 Return to Normal Science Operations". National Aeronautics and Space Administration (NASA) . Retrieved 6 July 2015.
  17. Feltman, Rachel (20 October 2016). "Juno spacecraft slips into safe mode, putting science on hold". Washington Post . Retrieved 20 October 2016.
  18. "Juno Spacecraft in Safe Mode for Latest Jupiter Flyby; Scientists Intrigued by Data from First Flyby". NASA JPL . 19 October 2016. Retrieved 20 October 2016.
  19. Opportunity Hunkers Down During Dust Storm. NASA. 12 June 2918.
  20. NASA Staff (13 June 2018). "Mars Dust Storm News - Teleconference - audio (065:22)". NASA . Archived from the original on 2021-12-21. Retrieved 13 June 2018.
  21. "Mars Exploration Rover Mission: All Opportunity Updates". mars.nasa.gov. Retrieved 2018-02-10.
  22. "NASA's Opportunity Rover Mission on Mars Comes to End". NASA. February 13, 2019. Retrieved February 13, 2019.
  23. Chou, Felicia (2018-10-08). Garner, Rob (ed.). "Oct. 8, 2018 - Hubble in Safe Mode as Gyro Issues are Diagnosed". NASA. Retrieved 2018-10-23.
  24. "Hubble on Twitter". Twitter. Retrieved 2018-10-23.
  25. Nancy G. Leveson (2004). "The Role of Software in Spacecraft Accidents" (PDF). Spacecraft and Rockets. 41 (4): 564–575. Bibcode:2004JSpRo..41..564L. CiteSeerX   10.1.1.202.8334 . doi:10.2514/1.11950.
  26. "The NEAR Rendezvous Burn Anomaly of December 1998" (PDF). Final Report of the NEAR Anomaly Review Board. November 1999. Archived from the original (PDF) on 2011-06-14. Retrieved 2009-08-18.
  27. "Report Reveals Likely Causes of Mars Spacecraft Loss" (Press release). NASA. 13 April 2007. Retrieved 2009-07-10.
  28. Geraint Jones (3 October 2014). "Space, the financial frontier – how citizen scientists took control of a probe". The Conversation. Retrieved 16 January 2016.
  29. Keith Kowing (25 September 2014). "ISEE-3 is in Safe Mode". Space College. Retrieved 15 January 2016.

See also