Sakata model

Last updated

In particle physics, the Sakata model of hadrons was a precursor to the quark model. It proposed that the proton, neutron, and Lambda baryon were elementary particles (sometimes referred to as sakatons [1] ), and that all other known hadrons were made of them. The model was proposed by Shoichi Sakata in 1956. [1] [2] The model was successful in explaining many features of hadrons, but was supplanted by the quark model as the understanding of hadrons progressed.

Contents

Overview

The success of the Sakata model is due to the fact that there is a correspondence between the proton, neutron, and Lambda baryon, and the up, down, and strange quarks. The proton contains two up quarks and a down quark, the neutron contains one up quark and two down quarks, while the Lambda baryon contains one up quark, one down quark, and one strange quark. That is, each of these baryons is made of one up and one down quark, and an additional quark: up for the proton, down for the neutron, and strange for the Lambda baryon. [1] Because of this correspondence to the up, down, and strange quarks, the Sakata model has the same SU(3) symmetry as the quark model, and can reproduce the flavour quantum numbers of all hadrons made of up, down and strange quarks. [1] Because the charm quark was not discovered until 1974, the Sakata model remained a staple of particle physics for some time after the quark model had been proposed.

See also

Related Research Articles

Baryon Hadron (subatomic particle) that is composed of three quarks

In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks. Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified as fermions because they have half-integer spin.

In particle physics, a hadron is a subatomic composite particle made of two or more quarks held together by the strong force in a similar way as molecules are held together by the electromagnetic force. Most of the mass of ordinary matter comes from two hadrons: the proton and the neutron.

Nucleon

In chemistry and physics, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines an isotope's mass number.

Quark Elementary particle

A quark is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as color confinement, quarks are never found in isolation; they can be found only within hadrons, which include baryons and mesons, or in quark–gluon plasmas. For this reason, much of what is known about quarks has been drawn from observations of hadrons.

Quantum chromodynamics Theory of the strong nuclear interactions

In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks and gluons, the fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carrier of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.

The strange quark or s quark is the third lightest of all quarks, a type of elementary particle. Strange quarks are found in subatomic particles called hadrons. Examples of hadrons containing strange quarks include kaons, strange D mesons, Sigma baryons, and other strange particles.

Subatomic particle Particle whose size or mass is less than that of the atom, or of which the atom is composed; small quantum particle

In physical sciences, subatomic particles are smaller than atoms. They can be composite particles, such as the neutron and proton; or elementary particles, which according to the standard model are not made of other particles. Particle physics and nuclear physics study these particles and how they interact. The concept of a subatomic particle was refined when experiments showed that light could behave like a stream of particles as well as exhibiting wave-like properties. This led to the concept of wave–particle duality to reflect that quantum-scale particles behave like both particles and waves. Another concept, the uncertainty principle, states that some of their properties taken together, such as their simultaneous position and momentum, cannot be measured exactly. The wave–particle duality has been shown to apply not only to photons but to more massive particles as well.

The bottom quark or b quark, also known as the beauty quark, is a third-generation heavy quark with a charge of −1/3 e.

Pentaquark

A pentaquark is a human-made subatomic particle, consisting of four quarks and one antiquark bound together; they are not known to occur naturally, or exist outside of experiments specifically carried out to create them.

In particle physics, the hyperchargeY of a particle is a quantum number conserved under the strong interaction. The concept of hypercharge provides a single charge operator that accounts for properties of isospin, electric charge, and flavour. The hypercharge is useful to classify hadrons; the similarly named weak hypercharge has an analogous role in the electroweak interaction.

In nuclear physics and particle physics, isospin (I) is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions of baryons and mesons.

Eightfold way (physics) Classification scheme for hadrons (matter experiencing the strong force) that led to the quark model

In physics, the eightfold way is an organizational scheme for a class of subatomic particles known as hadrons that led to the development of the quark model. American physicist Murray Gell-Mann and Israeli physicist Yuval Ne'eman both proposed the idea in 1961. The name comes from Gell-Mann's 1961 paper and is an allusion to the Noble Eightfold Path of Buddhism.

In particle physics, flavour or flavor refers to the species of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with flavour quantum numbers that are assigned to all subatomic particles. They can also be described by some of the family symmetries proposed for the quark-lepton generations.

The Gell-Mann–Nishijima formula (sometimes known as the NNG formula) relates the baryon number B, the strangeness S, the isospin I3 of quarks and hadrons to the electric charge Q. It was originally given by Kazuhiko Nishijima and Tadao Nakano in 1953, and led to the proposal of strangeness as a concept, which Nishijima originally called "eta-charge" after the eta meson. Murray Gell-Mann proposed the formula independently in 1956. The modern version of the formula relates all flavour quantum numbers (isospin up and down, strangeness, charm, bottomness, and topness) with the baryon number and the electric charge.

The Lambda baryons (Λ) are a family of subatomic hadron particles containing one up quark, one down quark, and a third quark from a higher flavour generation, in a combination where the quantum wave function changes sign upon the flavour of any two quarks being swapped. They are thus baryons, with total isospin of 0, and have either neutral electric charge or the elementary charge +1.

The Sigma baryons are a family of subatomic hadron particles which have two quarks from the first flavour generation, and a third quark from a higher flavour generation, in a combination where the wavefunction sign remains constant when any two quark flavours are swapped. They are thus baryons, with total isospin of 1, and can either be neutral or have an elementary charge of +2, +1, 0, or −1. They are closely related to the Lambda baryons, which differ only in the wavefunction's behaviour upon flavour exchange.

Shoichi Sakata Japanese physicist

Shoichi Sakata was a Japanese physicist and Marxist who was internationally known for theoretical work on the subatomic particles. He proposed the two meson theory, the Sakata model, and the Pontecorvo–Maki–Nakagawa–Sakata neutrino mixing matrix.

In physics, the Gell-Mann–Okubo mass formula provides a sum rule for the masses of hadrons within a specific multiplet, determined by their isospin (I) and strangeness

Susumu Okubo was a Japanese theoretical physicist at the University of Rochester. Ōkubo worked primarily on elementary particle physics. He is famous for the Gell-Mann–Okubo mass formula for mesons and baryons in the quark model; this formula correctly predicts the relations of masses of the members of SU(3) multiplets in terms of hypercharge and isotopic spin.

References

  1. 1 2 3 4 Okun, L.B. (2007). "The impact of the Sakata model". Progress of Theoretical Physics Supplement . 167: 163–174. arXiv: hep-ph/0611298 . Bibcode:2007PThPS.167..163O. doi: 10.1143/PTPS.167.163 .
  2. Sakata, S. (1956). "On a composite model for the new particles". Progress of Theoretical Physics . 16 (6): 686688. Bibcode:1956PThPh..16..686S. doi: 10.1143/PTP.16.686 .