In computer vision, a saliency map is an image that highlights either the region on which people's eyes focus first or the most relevant regions for machine learning models. [1] The goal of a saliency map is to reflect the degree of importance of a pixel to the human visual system or an otherwise opaque ML model.
For example, in this image, a person first looks at the fort and light clouds, so they should be highlighted on the saliency map. Saliency maps engineered in artificial or computer vision are typically not the same as the actual saliency map constructed by biological or natural vision.
Saliency maps have applications in a variety of different problems. Some general applications:
Saliency estimation may be viewed as an instance of image segmentation. In computer vision, image segmentation is the process of partitioning a digital image into multiple segments (sets of pixels, also known as superpixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics. [7]
There are three forms of classic saliency estimation algorithms implemented in OpenCV:
In addition to classic approaches, neural-network-based are also popular. There are examples of neural networks for motion saliency estimation:
There's a new static saliency in the literature with name visual distortion sensitivity [8] . It is based on the idea that the true edges, i.e. object contours, are more salient than the other complex textured regions. It detects edges in a different way from the classic edge detection algorithms. It uses a fairly small threshold for the gradient magnitudes to consider the mere presence of the gradients. So, it obtains 4 binary maps for vertical, horizontal and two diagonal directions. The morphological closing and opening are applied to the binary images to close the small gaps. To clear the blob-like shapes, it utilizes the distance transform. After all, the connected pixel groups are individual edges (or contours). A threshold of size of connected pixel set is used to determine whether an image block contains a perceivable edge (salient region) or not.
First, we should calculate the distance of each pixel to the rest of pixels in the same frame:
is the value of pixel , in the range of [0,255]. The following equation is the expanded form of this equation.
Where N is the total number of pixels in the current frame. Then we can further restructure our formula. We put the value that has same I together.
Where Fn is the frequency of In. And the value of n belongs to [0,255]. The frequencies is expressed in the form of histogram, and the computational time of histogram is time complexity.
This saliency map algorithm has time complexity. Since the computational time of histogram is time complexity which N is the number of pixel's number of a frame. Besides, the minus part and multiply part of this equation need 256 times operation. Consequently, the time complexity of this algorithm is which equals to .
All of the following code is pseudo MATLAB code. First, read data from video sequences.
fork=2:1:13% which means from frame 2 to 13, and in every loop K's value increase one.I=imread(currentfilename);% read current frameI1=im2single(I);% convert double image into single(requirement of command vlslic)l=imread(previousfilename);% read previous frameI2=im2single(l);regionSize=10;% set the parameter of SLIC this parameter setting are the experimental result. RegionSize means the superpixel size.regularizer=1;% set the parameter of SLICsegments1=vl_slic(I1,regionSize,regularizer);% get the superpixel of current framesegments2=vl_slic(I2,regionSize,regularizer);% get superpixel of the previous framenumsuppix=max(segments1(:));% get the number of superpixel all information about superpixel is in this link [http://www.vlfeat.org/overview/slic.html]regstats1=regionprops(segments1,’all’);regstats2=regionprops(segments2,’all’);% get the region characteristic based on segments1
After we read data, we do superpixel process to each frame. Spnum1 and Spnum2 represent the pixel number of current frame and previous pixel.
% First, we calculate the value distance of each pixel.% This is our core codefori=1:1:spnum1% From the first pixel to the last one. And in every loop i++forj=1:1:spnum2% From the first pixel to the last one. j++. previous framecentredist(i:j)=sum((center(i)-center(j)));% calculate the center distanceendend
Then we calculate the color distance of each pixel, this process we call it contract function.
fori=1:1:spnum1% From first pixel of current frame to the last one pixel. I ++forj=1:1:spnum2% From first pixel of previous frame to the last one pixel. J++posdiff(i,j)=sum((regstats1(j).Centroid’-mupwtd(:,i)));% Calculate the color distance.endend
After this two process, we will get a saliency map, and then store all of these maps into a new FileFolder.
The major difference between function one and two is the difference of contract function. If spnum1 and spnum2 both represent the current frame's pixel number, then this contract function is for the first saliency function. If spnum1 is the current frame's pixel number and spnum2 represent the previous frame's pixel number, then this contract function is for second saliency function. If we use the second contract function which using the pixel of the same frame to get center distance to get a saliency map, then we apply this saliency function to each frame and use current frame's saliency map minus previous frame's saliency map to get a new image which is the new saliency result of the third saliency function.
The saliency dataset usually contains human eye movements on some image sequences. It is valuable for new saliency algorithm creation or benchmarking the existing one. The most valuable dataset parameters are spatial resolution, size, and eye-tracking equipment. Here is part of the large datasets table from MIT/Tübingen Saliency Benchmark datasets, for example.
Dataset | Resolution | Size | Observers | Durations | Eyetracker |
---|---|---|---|---|---|
CAT2000 | 1920×1080px | 4000 images | 24 | 5 sec | EyeLink 1000 (1000Hz) |
EyeTrackUAV2 | 1280×720px | 43 videos | 30 | 33 sec | EyeLink 1000 Plus (1000 Hz, binocular) |
CrowdFix | 1280×720px | 434 videos | 26 | 1-3 sec | The Eyetribe Eyetracker (60 Hz) |
SAVAM | 1920×1080px | 43 videos | 50 | 20 sec | SMI iViewXTM Hi-Speed 1250 (500Hz) |
To collect a saliency dataset, image or video sequences and eye-tracking equipment must be prepared, and observers must be invited. Observers must have normal or corrected to normal vision and must be at the same distance from the screen. At the beginning of each recording session, the eye-tracker recalibrates. To do this, the observer fixates his gaze on the screen center. Then the session started, and saliency data are collected by showing sequences and recording eye gazes.
The eye-tracking device is a high-speed camera, capable of recording eye movements at least 250 frames per second. Images from the camera are processed by the software, running on a dedicated computer returning gaze data.
In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects. The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze. Image segmentation is typically used to locate objects and boundaries in images. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics.
Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer and a scene. Optical flow can also be defined as the distribution of apparent velocities of movement of brightness pattern in an image.
The following are common definitions related to the machine vision field.
In computer vision, blob detection methods are aimed at detecting regions in a digital image that differ in properties, such as brightness or color, compared to surrounding regions. Informally, a blob is a region of an image in which some properties are constant or approximately constant; all the points in a blob can be considered in some sense to be similar to each other. The most common method for blob detection is by using convolution.
As applied in the field of computer vision, graph cut optimization can be employed to efficiently solve a wide variety of low-level computer vision problems, such as image smoothing, the stereo correspondence problem, image segmentation, object co-segmentation, and many other computer vision problems that can be formulated in terms of energy minimization.
The Kadir–Brady saliency detector extracts features of objects in images that are distinct and representative. It was invented by Timor Kadir and J. Michael Brady in 2001 and an affine invariant version was introduced by Kadir and Brady in 2004 and a robust version was designed by Shao et al. in 2007.
Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated. Objects can even be recognized when they are partially obstructed from view. This task is still a challenge for computer vision systems. Many approaches to the task have been implemented over multiple decades.
In the fields of computer vision and image analysis, the Harris affine region detector belongs to the category of feature detection. Feature detection is a preprocessing step of several algorithms that rely on identifying characteristic points or interest points so to make correspondences between images, recognize textures, categorize objects or build panoramas.
In computer vision, maximally stable extremal regions (MSER) technique is used as a method of blob detection in images. This technique was proposed by Matas et al. to find correspondences between image elements taken from two images with different viewpoints. This method of extracting a comprehensive number of corresponding image elements contributes to the wide-baseline matching, and it has led to better stereo matching and object recognition algorithms.
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes.
The image segmentation problem is concerned with partitioning an image into multiple regions according to some homogeneity criterion. This article is primarily concerned with graph theoretic approaches to image segmentation applying graph partitioning via minimum cut or maximum cut. Segmentation-based object categorization can be viewed as a specific case of spectral clustering applied to image segmentation.
The constellation model is a probabilistic, generative model for category-level object recognition in computer vision. Like other part-based models, the constellation model attempts to represent an object class by a set of N parts under mutual geometric constraints. Because it considers the geometric relationship between different parts, the constellation model differs significantly from appearance-only, or "bag-of-words" representation models, which explicitly disregard the location of image features.
One-shot learning is an object categorization problem, found mostly in computer vision. Whereas most machine learning-based object categorization algorithms require training on hundreds or thousands of examples, one-shot learning aims to classify objects from one, or only a few, examples. The term few-shot learning is also used for these problems, especially when more than one example is needed.
Region growing is a simple region-based image segmentation method. It is also classified as a pixel-based image segmentation method since it involves the selection of initial seed points.
Geometric feature learning is a technique combining machine learning and computer vision to solve visual tasks. The main goal of this method is to find a set of representative features of geometric form to represent an object by collecting geometric features from images and learning them using efficient machine learning methods. Humans solve visual tasks and can give fast response to the environment by extracting perceptual information from what they see. Researchers simulate humans' ability of recognizing objects to solve computer vision problems. For example, M. Mata et al.(2002) applied feature learning techniques to the mobile robot navigation tasks in order to avoid obstacles. They used genetic algorithms for learning features and recognizing objects (figures). Geometric feature learning methods can not only solve recognition problems but also predict subsequent actions by analyzing a set of sequential input sensory images, usually some extracting features of images. Through learning, some hypothesis of the next action are given and according to the probability of each hypothesis give a most probable action. This technique is widely used in the area of artificial intelligence.
Foreground detection is one of the major tasks in the field of computer vision and image processing whose aim is to detect changes in image sequences. Background subtraction is any technique which allows an image's foreground to be extracted for further processing.
A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. Convolution-based networks are the de-facto standard in deep learning-based approaches to computer vision and image processing, and have only recently been replaced -- in some cases -- by newer deep learning architectures such as the transformer. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by using regularized weights over fewer connections. For example, for each neuron in the fully-connected layer, 10,000 weights would be required for processing an image sized 100 × 100 pixels. However, applying cascaded convolution kernels, only 25 neurons are required to process 5x5-sized tiles. Higher-layer features are extracted from wider context windows, compared to lower-layer features.
In computer vision, rigid motion segmentation is the process of separating regions, features, or trajectories from a video sequence into coherent subsets of space and time. These subsets correspond to independent rigidly moving objects in the scene. The goal of this segmentation is to differentiate and extract the meaningful rigid motion from the background and analyze it. Image segmentation techniques labels the pixels to be a part of pixels with certain characteristics at a particular time. Here, the pixels are segmented depending on its relative movement over a period of time i.e. the time of the video sequence.
The Teknomo–Fernandez algorithm , is an efficient algorithm for generating the background image of a given video sequence.
An event camera, also known as a neuromorphic camera, silicon retina or dynamic vision sensor, is an imaging sensor that responds to local changes in brightness. Event cameras do not capture images using a shutter as conventional (frame) cameras do. Instead, each pixel inside an event camera operates independently and asynchronously, reporting changes in brightness as they occur, and staying silent otherwise.