Satellite crop monitoring

Last updated
Crop Health Monitoring - e.g. color, size Wheat close-up.JPG
Crop Health Monitoring - e.g. color, size

Satellite crop monitoring is the technology which facilitates real-time crop vegetation index monitoring via spectral analysis [1] of high resolution satellite images for different fields and crops which enables to track positive and negative dynamics of crop development. [2] [3] The difference in vegetation index informs about single-crop development disproportions that speaks for the necessity of additional agriculture works on particular field zones [4] —that is because satellite crop monitoring belongs to precision agriculture methods.

Contents

Satellite crop monitoring technology allows to perform online crop monitoring on different fields, located in different areas, regions, even countries and on different continents. The technology's advantage is a high automation level of sown area condition and its interpretation in an interactive map which can be read by different groups of users. [5] [6]

Satellite crop monitoring technology users are:

See also

Related Research Articles

<span class="mw-page-title-main">Precision agriculture</span> Farming management strategy

Precision agriculture (PA) is a farming management strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. First conceptual work on PA and practical applications go back in the late 1980s. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources.

<span class="mw-page-title-main">Remote sensing</span> Acquisition of information at a significant distance from the subject

Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Earth and other planets. Remote sensing is used in numerous fields, including geophysics, geography, land surveying and most Earth science disciplines ; it also has military, intelligence, commercial, economic, planning, and humanitarian applications, among others.

The Global Earth Observation System of Systems (GEOSS) was built by the Group on Earth Observations (GEO) on the basis of a 10-Year Implementation Plan running from 2005 to 2015. GEOSS seeks to connect the producers of environmental data and decision-support tools with the end users of these products, with the aim of enhancing the relevance of Earth observations to global issues. GEOSS aims to produce a global public infrastructure that generates comprehensive, near-real-time environmental data, information and analyses for a wide range of users. The Secretariat Director of Geoss is Barbara Ryan.

<span class="mw-page-title-main">RapidEye</span>

RapidEye AG was a German geospatial information provider focused on assisting in management decision-making through services based on their own Earth-observation imagery. The company operated a five-satellite constellation producing 5-meter resolution imagery that was designed and implemented by MacDonald Dettwiler of Richmond, Canada.

<span class="mw-page-title-main">Normalized difference vegetation index</span> Graphical indicator of remotely sensed live green vegetation

The normalized difference vegetation index (NDVI) is a widely-used metric for quantifying the health and density of vegetation using sensor data. It is calculated from spectrometric data at two specific bands: red and near-infrared. The spectrometric data is usually sourced from remote sensors, such as satellites.

<span class="mw-page-title-main">Copernicus Programme</span> Programme of the European Commission

Copernicus is the Earth observation component of the European Union Space Programme, managed by the European Commission and implemented in partnership with the EU Member States, the European Space Agency (ESA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the European Centre for Medium-Range Weather Forecasts (ECMWF), the Joint Research Centre (JRC), the European Environment Agency (EEA), the European Maritime Safety Agency (EMSA), Frontex, SatCen and Mercator Océan.

Controlled-environment agriculture (CEA) -- which includes indoor agriculture (IA) and vertical farming—is a technology-based approach toward food production. The aim of CEA is to provide protection from the outdoor elements and maintain optimal growing conditions throughout the development of the crop. Production takes place within an enclosed growing structure such as a greenhouse or plant factory.

<span class="mw-page-title-main">Sentinel-2</span> Earth observation mission

Sentinel-2 is an Earth observation mission from the Copernicus Programme that systematically acquires optical imagery at high spatial resolution over land and coastal waters. The mission is currently a constellation with two satellites, Sentinel-2A and Sentinel-2B; a third satellite, Sentinel-2C, is currently undergoing testing in preparation for launch in 2024.

<span class="mw-page-title-main">Operational Land Imager</span> Sensing instrument aboard the Landsat 8 satellite orbiting Earth

The Operational Land Imager (OLI) is a remote sensing instrument aboard Landsat 8, built by Ball Aerospace & Technologies. Landsat 8 is the successor to Landsat 7 and was launched on February 11, 2013.

Precision viticulture is precision farming applied to optimize vineyard performance, in particular maximizing grape yield and quality while minimizing environmental impacts and risk. This is accomplished by measuring local variation in factors that influence grape yield and quality and applying appropriate viticulture management practices. Precision viticulture is based on the premise that high in-field variability for factors that affect vine growth and grape ripening warrants intensive management customized according to local conditions. Precision viticulture depends on new and emerging technologies such as global positioning systems (GPS), meteorologic and other environmental sensors, satellite and airborne remote sensing, and geographic information systems (GIS) to assess and respond to variability.

<span class="mw-page-title-main">Agricultural machinery</span> Machinery used in farming or other agriculture

Agricultural machinery relates to the mechanical structures and devices used in farming or other agriculture. There are many types of such equipment, from hand tools and power tools to tractors and the countless kinds of farm implements that they tow or operate. Diverse arrays of equipment are used in both organic and nonorganic farming. Especially since the advent of mechanised agriculture, agricultural machinery is an indispensable part of how the world is fed. Agricultural machinery can be regarded as part of wider agricultural automation technologies, which includes the more advanced digital equipment and robotics. While agricultural robots have the potential to automate the three key steps involved in any agricultural operation, conventional motorized machinery is used principally to automate only the performing step where diagnosis and decision-making are conducted by humans based on observations and experience.

<span class="mw-page-title-main">PROBA-V</span> European Space Agencys PROBA series satellite

PROBA-V, or PROBA-Vegetation, is a satellite in the European Space Agency's PROBA series. It was launched in 2013 with a predicted usable lifetime between 2.5 and 5 years.

<span class="mw-page-title-main">The Climate Corporation</span> American dIgital agriculture services company

The Climate Corporation is a digital agriculture company that examines weather, soil and field data to help farmers determine potential yield-limiting factors in their fields.

<span class="mw-page-title-main">Central Institute of Agricultural Engineering, Bhopal</span> Research center in Bhopal, India

The Central Institute of Agricultural Engineering (CIAE) is a higher seat of learning, research and development in the field of agricultural engineering, situated in the lake city of Bhopal, Madhya Pradesh, India. It is an autonomous body, an Indian Council of Agricultural Research subsidiary, under the Ministry of Agriculture & Farmer's Welfare, Government of India.

Normalized Difference Water Index (NDWI) may refer to one of at least two remote sensing-derived indexes related to liquid water:

<span class="mw-page-title-main">Agricultural technology</span> Use of technology in agriculture

Agricultural technology or agrotechnology is the use of technology in agriculture, horticulture, and aquaculture with the aim of improving yield, efficiency, and profitability. Agricultural technology can be products, services or applications derived from agriculture that improve various input/output processes.

<span class="mw-page-title-main">Vegetation index</span>

A vegetation index (VI) is a spectral imaging transformation of two or more image bands designed to enhance the contribution of vegetation properties and allow reliable spatial and temporal inter-comparisons of terrestrial photosynthetic activity and canopy structural variations.

Heather McNairn, is a federal research scientist at the Ottawa Research and Development Centre, Agriculture and Agri-Food Canada. She specializes in remote sensing technology, and her research focuses on the use of Synthetic Aperture Radar satellites (SARs) to monitor the condition of crops and soils.

Digital agriculture, sometimes known as smart farming or e-agriculture, is tools that digitally collect, store, analyze, and share electronic data and/or information in agriculture. The Food and Agriculture Organization of the United Nations has described the digitalization process of agriculture as the digital agricultural revolution. Other definitions, such as those from the United Nations Project Breakthrough, Cornell University, and Purdue University, also emphasize the role of digital technology in the optimization of food systems.

Index-based insurance, also known as index-linked insurance or, simply, index insurance, is primarily used in agriculture. Because of the high cost of assessing losses, traditional insurance based on paying indemnities for actual losses incurred is usually not viable, particularly for smallholders in developing countries. With index-based insurance, payouts are related to an “index” that is closely correlated to agricultural production losses, such as one based on rainfall, yield or vegetation levels. Payouts are made when the index exceeds a certain threshold, often referred to as a “trigger”. Index-based insurance is not therefore designed to protect farmers against every peril, but only where there is a widespread risk that significantly influences a farmer’s livelihood. Many such indices now make use of satellite imagery.

References

  1. "Spectral Analysis of Absorption Features for Mapping Vegetation Cover and Microbial Communities in Yellowstone National Park Using AVIRIS Data By Raymond F. Kokaly, Don G. Despain, Roger N. Clark, and K. Eric Livo (Professional Paper 1717). U.S. Department of the Interior, U.S. Geological Survey" (PDF). USGS.gov. Retrieved 10 January 2018.
  2. "Satellite Crop Monitoring - IEASSA". IEASSA.org. Retrieved 10 January 2018.
  3. "Satellite Crop Monitoring: Vegetation Control - IEASSA". IEASSA.org. 28 March 2013. Retrieved 10 January 2018.
  4. "Satellite monitoring data use // Current use and potential of satellite imagery for crop production management. B. de Solan, A.D. Lesergent, D. Gouache, F. Baret". Europa.eu. Retrieved 10 January 2018.
  5. "DMC Constellation : Airbus Defence and Space". www.Astrium-Geo.com. Retrieved 10 January 2018.
  6. "For Farmers - Precision Agriculture". www.PrecisionAgriculture.com.au. Retrieved 10 January 2018.
  7. "Agricultural Data and Insurance" (PDF). WorldBank.org. Retrieved 10 January 2018.
  8. Young, Oran R.; Onoda, Masami (2017). "Satellite Earth Observations in Environmental Problem-Solving" (PDF). Satellite Earth Observations and Their Impact on Society and Policy. Springer.com. pp. 3–27. doi:10.1007/978-981-10-3713-9_1. ISBN   978-981-10-3712-2. S2CID   134550559 . Retrieved 10 January 2018.
  9. "The role of satellite monitoring in food security problems solution", Institute for Environment and Sustainability(EC): Global monitoring of agriculture and food security