Scale-step

Last updated

In Schenkerian theory, a scale-step (German : Stufe) is a triad (based on one of the diatonic scale degrees) that is perceived as an organizing force for a passage of music (in accordance with the principle of composing-out). In Harmony, Schenker gives the following example and asserts that

our ear will connect the first tone, G, with the B on the first quarter of measure 1 as the third of G.

Play (help*info) Scalestepex2.PNG
Loudspeaker.svg Play  

Likewise, it will connect that G with the D on the first quarter of measure 2 as its fifth. Our ear will establish this connection instinctively, but nonetheless in accordance with the demands of Nature. In an analogous way, it will link that first G with the C and E of the second half of measure 1 and thus form the concept of another triad. For our ear will miss no opportunity to hear such triads, no matter how far in the background of our consciousness this conception may lie hidden and no matter whether in the plan of the composition it is overshadowed by far more obvious and important relationships. [1]

A scale-step triad is designated by an uppercase Roman numeral representing the scale degree of the root, much as in traditional "harmonic analysis" (see chord progression). Thus, in the above example (which is in G major), the G major triad that Schenker claims we perceive through the first two measures would be labelled "I". However, unlike traditional harmonic analyses, Schenker's theory is not concerned with the mere labelling of such chords, but rather with discerning hierarchical relationships among tones. For Schenker, the chords occurring in a passage need not be of equal import. As he explains:

The scale-step is a higher and more abstract unit [than the mere "chord"]. At times it may even comprise several harmonies, each of which could be considered individually as an independent triad or seventh-chord; in other words: even if, under certain circumstances, a certain number of harmonies look like independent triads, or seventh-chords, they may nonetheless add up, in their totality, to one single triad, e.g. C-E-G, and they would have to be subsumed under the concept of this triad on C as a scale-step. The scale-step asserts its higher or more general character by comprising or summarizing the individual phenomena and embodying their intrinsic unity in one single triad. [2]

Furthermore, in terms of Schenker's mature theory, the question of whether a given triad possesses scale-step status depends on the structural level under discussion. Indeed, it follows from Schenker's concepts that, at the highest level, a tonal composition possesses only one scale step, since the entirety of the work may be understood as an elaboration of its tonic triad (i.e. scale-step I).

Notes

  1. Schenker 1954: 133-134, section §76.
  2. Schenker 1954: 139

Related Research Articles

Harmony Aspect of music

In music, harmony is the process by which the composition of individual sounds, or superpositions of sounds, is analysed by hearing. Usually, this means simultaneously occurring frequencies, pitches, or chords.

In music theory, the tritone is defined as a musical interval composed of three adjacent whole tones. For instance, the interval from F up to the B above it is a tritone as it can be decomposed into the three adjacent whole tones F–G, G–A, and A–B. According to this definition, within a diatonic scale there is only one tritone for each octave. For instance, the above-mentioned interval F–B is the only tritone formed from the notes of the C major scale. A tritone is also commonly defined as an interval spanning six semitones. According to this definition, a diatonic scale contains two tritones for each octave. For instance, the above-mentioned C major scale contains the tritones F–B and B–F. In twelve-equal temperament, the tritone divides the octave exactly in half as 6 of 12 semitones or 600 of 1200 cents.

In music theory, a leading-tone is a note or pitch which resolves or "leads" to a note one semitone higher or lower, being a lower and upper leading-tone, respectively. Typically, the leading tone refers to the seventh scale degree of a major scale, a major seventh above the tonic. In the movable do solfège system, the leading-tone is sung as ti.

In a musical composition, a chord progression or harmonic progression is a succession of chords. Chord progressions are the foundation of harmony in Western musical tradition from the common practice era of Classical music to the 21st century. Chord progressions are the foundation of Western popular music styles and traditional music. In these genres, chord progressions are the defining feature on which melody and rhythm are built.

In music, the subdominant is the fourth tonal degree of the diatonic scale. It is so called because it is the same distance below the tonic as the dominant is above the tonic – in other words, the tonic is the dominant of the subdominant. It also happens to be the note one step below the dominant. In the movable do solfège system, the subdominant note is sung as fa.

Schenkerian analysis is a method of analyzing tonal music, based on the theories of Heinrich Schenker (1868–1935). The goal is to demonstrate the organic coherence of the work by showing how it relates to an abstracted deep structure, the Ursatz. This primal structure is roughly the same for any tonal work, but a Schenkerian analysis shows how, in an individual case, that structure develops into a unique work at the "foreground", the level of the score itself. A key theoretical concept is "tonal space". The intervals between the notes of the tonic triad in the background form a tonal space that is filled with passing and neighbour tones, producing new triads and new tonal spaces that are open for further elaborations until the "surface" of the work is reached.

Tonality

Tonality is the arrangement of pitches and/or chords of a musical work in a hierarchy of perceived relations, stabilities, attractions and directionality. In this hierarchy, the single pitch or triadic chord with the greatest stability is called the tonic. The root of the tonic chord forms the name given to the key; so in the key of C major, the note C is both the tonic of the scale and the root of the tonic chord. Simple folk music songs often start and end with the tonic note. The most common use of the term "is to designate the arrangement of musical phenomena around a referential tonic in European music from about 1600 to about 1910". Contemporary classical music from 1910 to the 2000s may practice or avoid any sort of tonality—but harmony in almost all Western popular music remains tonal. Harmony in jazz includes many but not all tonal characteristics of the European common practice period, sometimes known as "classical music".

Root (chord)

In music theory, the concept of root is the idea that a chord can be represented and named by one of its notes. It is linked to harmonic thinking—the idea that vertical aggregates of notes can form a single unit, a chord. It is in this sense that one speaks of a "C chord" or a "chord on C"—a chord built from C and of which the note C is the root. When a chord is referred to in Classical music or popular music without a reference to what type of chord it is, it is assumed a major triad, which for C contains the notes C, E and G. The root need not be the bass note, the lowest note of the chord: the concept of root is linked to that of the inversion of chords, which is derived from the notion of invertible counterpoint. In this concept, chords can be inverted while still retaining their root.

In music theory, a ninth chord is a chord that encompasses the interval of a ninth when arranged in close position with the root in the bass.

The ninth chord and its inversions exist today, or at least they can exist. The pupil will easily find examples in the literature [such as Schoenberg's Verklärte Nacht and Strauss's opera Salome]. It is not necessary to set up special laws for its treatment. If one wants to be careful, one will be able to use the laws that pertain to the seventh chords: that is, dissonances resolve by step downward, the root leaps a fourth upward.

In music, function is a term used to denote the relationship of a chord or a scale degree to a tonal centre. Two main theories of tonal functions exist today:

Chromaticism is a compositional technique interspersing the primary diatonic pitches and chords with other pitches of the chromatic scale. Chromaticism is in contrast or addition to tonality or diatonicism and modality. Chromatic elements are considered, "elaborations of or substitutions for diatonic scale members".

Not only at the beginning of a composition but also in the midst of it, each scale-step [degree] manifests an irresistible urge to attain the value of the tonic for itself as that of the strongest scale-step. If the composer yields to this urge of the scale-step within the diatonic system of which this scale-step forms part, I call this process tonicalization and the phenomenon itself chromatic.

Chromaticism is almost by definition an alteration of, an interpolation in or deviation from this basic diatonic organization.

Throughout the nineteenth century, composers felt free to alter any or all chord members of a given tertian structure [chord built from thirds] according to their compositional needs and dictates. Pronounced or continuous chordal alteration [and 'extension'] resulted in chromaticism. Chromaticism, together with frequent modulations and an abundance of non-harmonicism [non-chord tones], initially effected an expansion of the tertian system; the overuse of the procedures late in the century forewarned the decline and near collapse [atonality] of the system [tonality].

Chromaticism is the name given to the use of tones outside the major or minor scales. Chromatic tones began to appear in music long before the common-practice period, and by the beginning of that period were an important part of its melodic and harmonic resources. Chromatic tones arise in music partly from inflection [alteration] of scale degrees in the major and minor modes, party from secondary dominant harmony, from a special vocabulary of altered chords, and from certain nonharmonic tones.... Notes outside the scale do not necessarily affect the tonality....tonality is established by the progression of roots and the tonal functions of the chords, even though the details of the music may contain all the tones of the chromatic scale.

Sometimes...a melody based on a regular diatonic scale is laced with many accidentals, and although all 12 tones of the chromatic scale may appear, the tonal characteristics of the diatonic scale are maintained. ... Chromaticism [is t]he introduction of some pitches of the chromatic scale into music that is basically diatonic in orientation, or music that is based on the chromatic scale instead of the diatonic scales.

In music theory, a dominant seventh chord, or major minor seventh chord, is a seventh chord, usually built on the fifth degree of the major scale, and composed of a root, major third, perfect fifth, and minor seventh. Thus it is a major triad together with a minor seventh, denoted by the letter name of the chord root and a superscript "7". An example is the dominant seventh chord built on G, written as G7, having pitches G–B–D–F:

The diminished seventh chord is a seventh chord composed of a root note, together with a minor third, a diminished fifth, and a diminished seventh above the root:. For example, the diminished seventh chord built on C, commonly written as Co7, has pitches C–E–G–B:

Voice leading is the linear progression of individual melodic lines and their interaction with one another to create harmonies, typically in accordance with the principles of common-practice harmony and counterpoint.

In music theory, prolongation is the process in tonal music through which a pitch, interval, or consonant triad is able to govern spans of music when not physically sounding. It is a central principle in the music-analytic methodology of Schenkerian analysis, conceived by Austrian theorist Heinrich Schenker.

Consonance and dissonance Categorizations of simultaneous or successive sounds

In music, consonance and dissonance are categorizations of simultaneous or successive sounds. Within the Western tradition, consonance is typically associated with sweetness, pleasantness, and acceptability; dissonance is associated with harshness, unpleasantness, or unacceptability, although this depends also on familiarity and musical expertise. The terms form a structural dichotomy in which they define each other by mutual exclusion: a consonance is what is not dissonant, and a dissonance is what is not consonant. However, a finer consideration shows that the distinction forms a gradation, from the most consonant to the most dissonant. As Hindemith stressed, "The two concepts have never been completely explained, and for a thousand years the definitions have varied". The term sonance has been proposed to encompass or refer indistinctly to the terms consonance and dissonance.

Diatonic and chromatic Terms in music theory to characterize scales

Diatonic and chromatic are terms in music theory that are most often used to characterize scales, and are also applied to musical instruments, intervals, chords, notes, musical styles, and kinds of harmony. They are very often used as a pair, especially when applied to contrasting features of the common practice music of the period 1600–1900.

Roman numeral analysis is a type of musical analysis in which chords are represented by Roman numerals. In some cases, Roman numerals denote scale degrees themselves. More commonly, however, they represent the chord whose root note is that scale degree. For instance, III denotes either the third scale degree or, more commonly, the chord built on it. Typically, uppercase Roman numerals are used to represent major chords, while lowercase Roman numerals are used to represent minor chords. However, some music theorists use upper-case Roman numerals for all chords, regardless of chord quality.

Klang (music)

In music, klang is a term sometimes used to translate the German Klang, a highly polysemic word. Technically, the term denotes any periodic sound, especially as opposed to simple periodic sounds. In the German lay usage, it may mean "sound" or "tone", "musical tone", "note", or "timbre"; a chord of three notes is called a Dreiklang, etc.

This is a glossary of Schenkerian analysis, a method of musical analysis of tonal music based on the theories of Heinrich Schenker (1868–1935). The method is discussed in the concerned article and no attempt is made here to summarize it. Similarly, the entries below whenever possible link to other articles where the concepts are described with more details, and the definitions are kept here to a minimum.

References