Scale (geography)

Last updated

In geography, scale is the level at which a geographical phenomenon occurs or is described. This concept is derived from the map scale in cartography. Geographers describe geographical phenomena and differences using different scales. From an epistemological perspective, scale is used to describe how detailed an observation is, while ontologically, scale is inherent in the complex interaction between society and nature. [1]

Contents

Scale effect

The concept of scale is central to geography. To study any geographical phenomenon, one must first determine the scale or resolution, because different scales or resolutions may result in different observations and hence different conclusions. This problem is called scale effect or scale dependency. [2] For example, the answer to the famous question " How Long Is the Coast of Britain " is highly dependent on the choice of cartographic scales.

In cartography and spatial analysis, scale effect and zoning effect (different ways of zoning lead to different statistical outcomes) conbimed can lead to modifiable areal unit problem (MAUP). [2]

Types

Spatio-temporal hierarchies in landscape ecology [3]
ScaleSpatial (m2)Temporal (yr)
Micro-100 - 1061 -500
Meso-106 - 1010500 - 10,000
Macro-1010 - 101210,000 - 1,000,000
Mega-1012 -1,000,000 -

In geography, the term "scale" can be spatial, temporal, or spatio-temporal, but often (though not always) means spatial scale in spatial analysis. In different contexts, "scale" could have very different connotations, which could be classified as follows: [4]

See also

Related Research Articles

<span class="mw-page-title-main">Choropleth map</span> Type of data visualization for geographic regions

A choropleth map is a type of statistical thematic map that uses pseudocolor, meaning color corresponding with an aggregate summary of a geographic characteristic within spatial enumeration units, such as population density or per-capita income.

<span class="mw-page-title-main">Tobler's first law of geography</span>

The First Law of Geography, according to Waldo Tobler, is "everything is related to everything else, but near things are more related than distant things." This first law is the foundation of the fundamental concepts of spatial dependence and spatial autocorrelation and is utilized specifically for the inverse distance weighting method for spatial interpolation and to support the regionalized variable theory for kriging. The first law of geography is the fundamental assumption used in all spatial analysis.

<span class="mw-page-title-main">Spatial analysis</span> Formal techniques which study entities using their topological, geometric, or geographic properties

Spatial analysis is any of the formal techniques which studies entities using their topological, geometric, or geographic properties. Spatial analysis includes a variety of techniques using different analytic approaches, especially spatial statistics. It may be applied in fields as diverse as astronomy, with its studies of the placement of galaxies in the cosmos, or to chip fabrication engineering, with its use of "place and route" algorithms to build complex wiring structures. In a more restricted sense, spatial analysis is geospatial analysis, the technique applied to structures at the human scale, most notably in the analysis of geographic data. It may also be applied to genomics, as in transcriptomics data.

<span class="mw-page-title-main">Modifiable areal unit problem</span> Source of statistical bias

The modifiable areal unit problem (MAUP) is a source of statistical bias that can significantly impact the results of statistical hypothesis tests. MAUP affects results when point-based measures of spatial phenomena are aggregated into spatial partitions or areal units as in, for example, population density or illness rates. The resulting summary values are influenced by both the shape and scale of the aggregation unit.

<span class="mw-page-title-main">Thematic map</span> Type of map that visualizes data

A thematic map is a type of map that portrays the geographic pattern of a particular subject matter (theme) in a geographic area. This usually involves the use of map symbols to visualize selected properties of geographic features that are not naturally visible, such as temperature, language, or population. In this, they contrast with general reference maps, which focus on the location of a diverse set of physical features, such as rivers, roads, and buildings. Alternative names have been suggested for this class, such as special-subject or special-purpose maps, statistical maps, or distribution maps, but these have generally fallen out of common usage. Thematic mapping is closely allied with the field of Geovisualization.

<span class="mw-page-title-main">Field (geography)</span> Property that varies over space

In the context of spatial analysis, geographic information systems, and geographic information science, a field is a property that fills space, and varies over space, such as temperature or density. This use of the term has been adopted from physics and mathematics, due to their similarity to physical fields (vector or scalar) such as the electromagnetic field or gravitational field. Synonymous terms include spatially dependent variable (geostatistics), statistical surface ( thematic mapping), and intensive property (physics and chemistry) and crossbreeding between these disciplines is common. The simplest formal model for a field is the function, which yields a single value given a point in space (i.e., t = f(x, y, z) )

Gap analysis is a tool used in wildlife conservation to identify gaps in conservation lands or other wildlands where significant plant and animal species and their habitat or important ecological features occur.

Statistical geography is the study and practice of collecting, analysing and presenting data that has a geographic or areal dimension, such as census or demographics data. It uses techniques from spatial analysis, but also encompasses geographical activities such as the defining and naming of geographical regions for statistical purposes. For example, for the purposes of statistical geography, the Australian Bureau of Statistics uses the Australian Standard Geographical Classification, a hierarchical regionalisation that divides Australia up into states and territories, then statistical divisions, statistical subdivisions, statistical local areas, and finally census collection districts.

A feature, in the context of geography and geographic information science, is a discrete phenomenon that exists at a location in the space and scale of relevance to geography; that is, at or near the surface of Earth, at a moderate to global scale. It is one of the primary types of phenomena represented in geographic information, such as that represented in maps, geographic information systems, remote sensing imagery, statistics, and other forms of geographic discourse. Such representations of features consists of descriptions of their inherent nature, their spatial form and location, and their characteristics or properties.

<span class="mw-page-title-main">Geography</span> Study of lands and inhabitants of Earth

Geography is a field of science devoted to the study of the lands, features, inhabitants, and phenomena of Earth. The first recorded use of the word γεωγραφία was as a title of a book by Greek scholar Eratosthenes. Geography is an all-encompassing discipline that seeks an understanding of Earth and its human and natural complexities—not merely where objects are, but also how they have changed and come to be. While geography is specific to Earth, many concepts can be applied more broadly to other celestial bodies in the field of planetary science. One such concept, the first law of geography, proposed by Waldo Tobler, is "everything is related to everything else, but near things are more related than distant things." Geography has been called "the world discipline" and "the bridge between the human and the physical sciences."

Cartographic generalization, or map generalization, includes all changes in a map that are made when one derives a smaller-scale map from a larger-scale map or map data. It is a core part of cartographic design. Whether done manually by a cartographer or by a computer or set of algorithms, generalization seeks to abstract spatial information at a high level of detail to information that can be rendered on a map at a lower level of detail.

Geographic information systems (GISs) and geographic information science (GIScience) combine computer-mapping capabilities with additional database management and data analysis tools. Commercial GIS systems are very powerful and have touched many applications and industries, including environmental science, urban planning, agricultural applications, and others.

<span class="mw-page-title-main">Outline of geography</span> Hierarchical outline list of articles related to geography

The following outline is provided as an overview of and topical guide to geography:

<span class="mw-page-title-main">Dot distribution map</span> Thematic map using dots to visualize distribution

A dot distribution map is a type of thematic map that uses a point symbol to visualize the geographic distribution of a large number of related phenomena. Dot maps are a type of unit visualizations that rely on a visual scatter to show spatial patterns, especially variances in density. The dots may represent the actual locations of individual phenomena, or be randomly placed in aggregation districts to represent a number of individuals. Although these two procedures, and their underlying models, are very different, the general effect is the same.

A boundary problem in analysis is a phenomenon in which geographical patterns are differentiated by the shape and arrangement of boundaries that are drawn for administrative or measurement purposes. The boundary problem occurs because of the loss of neighbors in analyses that depend on the values of the neighbors. While geographic phenomena are measured and analyzed within a specific unit, identical spatial data can appear either dispersed or clustered depending on the boundary placed around the data. In analysis with point data, dispersion is evaluated as dependent of the boundary. In analysis with areal data, statistics should be interpreted based upon the boundary.

Quantitative geography is a subfield and methodological approach to geography that develops, tests, and uses mathematical and statistical methods to analyze and model geographic phenomena and patterns. It aims to explain and predict the distribution and dynamics of human and physical geography through the collection and analysis of quantifiable data. The approach quantitative geographers take is generally in line with the scientific method, where a falsifiable hypothesis is generated, and then tested through observational studies. This has received criticism, and in recent years, quantitative geography has moved to include systematic model creation and understanding the limits of their models. This approach is used to study a wide range of topics, including population demographics, urbanization, environmental patterns, and the spatial distribution of economic activity. The methods of quantitative geography are often contrasted by those employed by qualitative geography, which is more focused on observing and recording characteristics of geographic place. However, there is increasing interest in using combinations of both qualitative and quantitative methods through mixed-methods research to better understand and contextualize geographic phenomena.

<span class="mw-page-title-main">Tobler's second law of geography</span>

The second law of geography, according to Waldo Tobler, is "the phenomenon external to a geographic area of interest affects what goes on inside." This is an extension of his first. He first published it in 1999 in reply to a paper titled "Linear pycnophylactic reallocation comment on a paper by D. Martin" and then again in response to criticism of his first law of geography titled "On the First Law of Geography: A Reply." Much of this criticism was centered on the question of if laws were meaningful in geography or any of the social sciences. In this document, Tobler proposed his second law while recognizing others have proposed other concepts to fill the role of 2nd law. Tobler asserted that this phenomenon is common enough to warrant the title of 2nd law of geography. Unlike Tobler's first law of geography, which is relatively well accepted among geographers, there are a few contenders for the title of the second law of geography. Tobler's second law of geography is less well known but still has profound implications for geography and spatial analysis.

<span class="mw-page-title-main">Arbia's law of geography</span>

Arbia’s law of geography states, "Everything is related to everything else, but things observed at a coarse spatial resolution are more related than things observed at a finer resolution." Originally proposed as the 2nd law of geography, this is one of several laws competing for that title. Because of this, Arbia's law is sometimes referred to as the second law of geography, or Arbia's second law of geography.

<span class="mw-page-title-main">Uncertain geographic context problem</span>

The uncertain geographic context problem (UGCoP) is a source of statistical bias that can significantly impact the results of spatial analysis when dealing with aggregate data. The UGCoP is very closely related to the Modifiable areal unit problem (MAUP), and like the MAUP, arises from how we divide the land into areal units. It is caused by the difficulty, or impossibility, of understanding how phenomena under investigation in different enumeration units interact between enumeration units, and outside of a study area over time. It is particularly important to consider the UGCoP within the discipline of time geography, where phenomena under investigation can move between spatial enumeration units during the study period. Examples of research that needs to consider the UGCoP include food access and human mobility.

The Modified Temporal Unit Problem (MTUP) is a source of statistical bias that can occur in time series and spatial analysis when using temporal data that has varying temporal resolutions. In such cases, choosing an appropriate temporal unit can affect the analysis results and lead to inconsistencies or errors in statistical hypothesis testing.

References

  1. Susan Mayhew (2009). Oxford Dictionary of Geography. New York: Oxford University Press. p. 443. ISBN   9780199231805.
  2. 1 2 Fotheringham, A. S.; Rogerson, P. A (2008). The Modifiable Areal Unit Problem (MAUP). Sage. pp. 105–124. ISBN   978-1-4129-1082-8.
  3. Delcourt, H. R.; Delcourt, P. A. (1988). "Quaternary landscape ecology: relevant scales in space and time". Landscape ecology. 2: 23–44. doi:10.1007/BF00138906.
  4. Lam, N. S.-N.; Quattrochi, D. A. (1992). "On the Issues of Scale, Resolution, and Fractal Analysis in the Mapping Sciences". The Professional Geographer. 44 (1): 88–98. doi:10.1111/j.0033-0124.1992.00088.x.