Scanning acoustic microscope

Last updated
A penny scanned in an acoustic microscope at 50 MHz SAM penny 50MHz.jpg
A penny scanned in an acoustic microscope at 50 MHz

A scanning acoustic microscope (SAM) is a device which uses focused sound to investigate, measure, or image an object (a process called scanning acoustic tomography). It is commonly used in failure analysis and non-destructive evaluation. It also has applications in biological and medical research. The semiconductor industry has found the SAM useful in detecting voids, cracks, and delaminations within microelectronic packages.

Contents

History

The first scanning acoustic microscope (SAM), with a 50 MHz ultrasonic lens, was developed in 1974 by R. A. Lemons and C. F. Quate at the Microwave Laboratory of Stanford University. [1] A few years later, in 1980, the first high-resolution (with a frequency up to 500 MHz) through-transmission SAM was built by R.Gr. Maev and his students at his Laboratory of Biophysical Introscopy of the Russian Academy of Sciences. [2] First commercial SAM ELSAM, with a broad frequency range from 100 MHz up to 1.8 GHz, was built at the Ernst Leitz GmbH by the group led by Martin Hoppe and his consultants Abdullah Atalar (Stanford University), Roman Maev (Russian Academy of Sciences) and Andrew Briggs (Oxford University.) [3] [4]

Since then, many improvements to such systems have been made to enhance resolution and accuracy. Most of them were described in detail in the monograph Advanced in Acoustic Microscopy, Ed. by Andrew Briggs, 1992, Oxford University Press and in monograph by Roman Maev, Acoustic Microscopy Fundamentals and Applications, Monograph, Wiley & Son - VCH, 291 pages, August 2008, as well as recently in. [5]

C-SAM versus other Techniques

There are lots of methods for failure analysis of damages in microelectronic packages, including but not limited to laser decapsulation, wet etch decapsulation, optical microscopy, SEM microscopy, X-ray.There are many methods for failure analysis of damages in microelectronic packages. The problem with most of these methods is the fact that they are destructive. This means it’s possible that the damage itself will be done during preparation. Also, most of these destructive methods need time-consuming and complicated sample preparation. So, in most cases, it is important to study damages with a non-destructive technique. And unlike other non-destructive techniques such as X-Ray, CSAM is highly sensitive to the elastic properties of the materials it travels through. For example, CSAM is highly sensitive to the presence of delaminations and air-gaps at sub-micron thicknesses, so it is particularly useful for inspection of small, complex devices. [6]

Physics Principle

The technique makes use of the high penetration depth of acoustic waves to image the internal structure of the specimen. So, in scanning acoustic microscopy either reflected or transmitted acoustic waves are processed to analyze the internal features. When the acoustic wave propagates though the sample it may be scattered, absorbed or reflected at media interfaces. Thus, the technique registers the echo generated by the acoustic impedance (Z) contrast between two materials. Scanning acoustic microscopy works by directing focused sound from a transducer at a small point on a target object. Sound hitting the object is either scattered, absorbed, reflected (scattered at 180°) or transmitted (scattered at 0°). It is possible to detect the scattered pulses travelling in a particular direction. A detected pulse informs of the presence of a boundary or object. The `time of flight' of the pulse is defined as the time taken for it to be emitted by an acoustic source, scattered by an object and received by the detector, which is usually coincident with the source. The time of flight can be used to determine the distance of the inhomogeneity from the source given knowledge of the speed through the medium.

Based on the measurement, a value is assigned to the location investigated. The transducer (or object) is moved slightly and then insonified again. This process is repeated in a systematic pattern until the entire region of interest has been investigated. Often the values for each point are assembled into an image of the object. The contrast seen in the image is based either on the object's geometry or material composition. The resolution of the image is limited either by the physical scanning resolution or the width of the sound beam (which in turn is determined by the frequency of the sound).

Methodology

Different types of analysis modes are available in high-definition SAM. The main three modes are A-scans, B-scans, and C-scans. Each one provides different information about the integrity of the sample’s structure. [6]

The A-scan is the amplitude of the echo signal over ToF. The transducer is mounted on the z-axis of the SAM. It can be focused to a specific target layer located in a hard-to-access area by changing the z-position with respect to the sample under testing that is mechanically fixed. [6]

The B-scan provides a vertical cross section of the sample with visualization of the depth information. It is a very good feature when it comes to damage detection in the cross section. [6]

The C-scan is a commonly used scanning mode, which gives 2D images (slices) of a target layer at a specific depth in the samples; multiple equidistant layers are feasible through the X-scan mode. [6]

Pulse-reflection method

2D or 3D-dimensional images of the internal structure become available by means of the pulse-reflection method, in which the impedance mismatch between two materials leads to a reflection of the ultrasonic beam. Phase inversion of the reflected signal can allow for discrimination of the delamination (acoustic impedance almost zero) from inclusions and particles, but not from air bubbles, which show same impedance behavior as delamination. [6]

The higher the impedance mismatch at the interface, the higher the intensity of the reflected signal (more brightness in the 2D image), which is measured by the echo amplitude. In the case of an interface with air (Z = 0), total reflection of the ultrasonic wave occurs; therefore, SAM is highly sensitive to any entrapped air in the sample under testing. [6]

In order to enhance the insertion of the acoustic wave into the specimen both the acoustic transducer and the sample are immersed in a coupling media, typically water, to avoid the high reflection at air interfaces.

In the pulse-wave mode, a lens having good focusing properties on an axis is used to focus the ultrasonic waves onto a spot on the specimen and to receive the reflected waves back from the spot, typically in less than 100 ns. The acoustic beam can be focused to a sufficiently small spot at a depth up to 2–3 mm to resolve typical interlaminar cracks and other critical crack geometries. The received echoes are analysed and stored for each point to build up an image of the entire scanned area. The reflected signal is monitored and sent to a synchronous display to develop a complete image, as in a scanning electron microscope.

Applications

- Fast production control - Standards : IPC A610, Mil-Std883, J-Std-035, Esa, etc - Parts sorting - Inspection of solder pads, flip-chip, underfill, die-attach - Sealing joints - Brazed and welded joints - Qualification and fast selection of glues, adhesive, comparative analyses of aging, etc - Inclusions, heterogeneities, porosities, cracks in material

Medicine and biology

SAM can provide data on the elasticity of cells and tissues, which can give useful information on the physical forces holding structures in a particular shape and the mechanics of structures such as the cytoskeleton. [7] [8] These studies are particularly valuable in investigating processes such as cell motility. [9] [10]

Some work has also been performed to assess penetration depth of particles injected into skin using needle-free injection [11]

Another promising direction was initiated by different groups to design and build portable hand-held SAM for subsurface diagnostics of soft and hard tissues [12] [5] and this direction currently in the commercialization process in clinical and cosmetology practice.

See also

Related Research Articles

<span class="mw-page-title-main">Microscopy</span> Viewing of objects which are too small to be seen with the naked eye

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

<span class="mw-page-title-main">Microscope</span> Scientific instrument

A microscope is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisible to the eye unless aided by a microscope.

<span class="mw-page-title-main">Scanning electron microscope</span> Electron microscope where a small beam is scanned across a sample

A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that contain information about the surface topography and composition of the sample. The electron beam is scanned in a raster scan pattern, and the position of the beam is combined with the intensity of the detected signal to produce an image. In the most common SEM mode, secondary electrons emitted by atoms excited by the electron beam are detected using a secondary electron detector. The number of secondary electrons that can be detected, and thus the signal intensity, depends, among other things, on specimen topography. Some SEMs can achieve resolutions better than 1 nanometer.

<span class="mw-page-title-main">Optical microscope</span> Microscope that uses visible light

The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century. Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast.

<span class="mw-page-title-main">Medical ultrasound</span> Diagnostic and therapeutic technique

Medical ultrasound includes diagnostic techniques using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics or to generate an informative audible sound. The usage of ultrasound to produce visual images for medicine is called medical ultrasonography or simply sonography, or echography. The practice of examining pregnant women using ultrasound is called obstetric ultrasonography, and was an early development of clinical ultrasonography. The machine used is called an ultrasound machine, a sonograph or an echograph. The visual image formed using this technique is called an ultrasonogram, a sonogram or an echogram.

<span class="mw-page-title-main">Atomic force microscopy</span> Type of microscopy

Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit.

<span class="mw-page-title-main">Photoacoustic imaging</span> Imaging using the photoacoustic effect

Photoacoustic imaging or optoacoustic imaging is a biomedical imaging modality based on the photoacoustic effect. Non-ionizing laser pulses are delivered into biological tissues and part of the energy will be absorbed and converted into heat, leading to transient thermoelastic expansion and thus wideband ultrasonic emission. The generated ultrasonic waves are detected by ultrasonic transducers and then analyzed to produce images. It is known that optical absorption is closely associated with physiological properties, such as hemoglobin concentration and oxygen saturation. As a result, the magnitude of the ultrasonic emission, which is proportional to the local energy deposition, reveals physiologically specific optical absorption contrast. 2D or 3D images of the targeted areas can then be formed.

<span class="mw-page-title-main">Ultrasonic testing</span> Non-destructive material testing using ultrasonic waves

Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion.

Dr. Mehrdad Nikoonahad is an Iranian-American electrical engineer, technologist, innovator and entrepreneur.

<span class="mw-page-title-main">Ultrasonic transducer</span> Acoustic sensor

Ultrasonic transducers and ultrasonic sensors are devices that generate or sense ultrasound energy. They can be divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert electrical signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers can both transmit and receive ultrasound.

Acoustic microscopy is microscopy that employs very high or ultra high frequency ultrasound. Acoustic microscopes operate non-destructively and penetrate most solid materials to make visible images of internal features, including defects such as cracks, delaminations and voids.

Non-contact ultrasound (NCU) is a method of non-destructive testing where ultrasound is generated and used to test materials without the generating sensor making direct or indirect contact with the test material or test subject. Historically this has been difficult to do, as a typical transducer is very inefficient in air. Therefore, most conventional ultrasound methods require the use of some type of acoustic coupling medium in order to efficiently transmit the energy from the sensor to the test material. Couplant materials can range from gels or jets of water to direct solder bonds. However, in non-contact ultrasound, ambient air is the only acoustic coupling medium.

<span class="mw-page-title-main">Digital holographic microscopy</span>

Digital holographic microscopy (DHM) is digital holography applied to microscopy. Digital holographic microscopy distinguishes itself from other microscopy methods by not recording the projected image of the object. Instead, the light wave front information originating from the object is digitally recorded as a hologram, from which a computer calculates the object image by using a numerical reconstruction algorithm. The image forming lens in traditional microscopy is thus replaced by a computer algorithm. Other closely related microscopy methods to digital holographic microscopy are interferometric microscopy, optical coherence tomography and diffraction phase microscopy. Common to all methods is the use of a reference wave front to obtain amplitude (intensity) and phase information. The information is recorded on a digital image sensor or by a photodetector from which an image of the object is created (reconstructed) by a computer. In traditional microscopy, which do not use a reference wave front, only intensity information is recorded and essential information about the object is lost.

<span class="mw-page-title-main">Roman Maev</span>

Roman Grigorievich Maev , is a Canadian professor of physics at the University of Windsor, distinguished university professor, the Foreign Member of the Russian Academy of Sciences (RAS) (2019), full professor in physics (2005), Dr. Sc. (2002), Ph. D. (1973). Dr. Maev is the founding director of the Institute for Diagnostic Imaging Research at the University of Windsor.

<span class="mw-page-title-main">Atomic force acoustic microscopy</span>

Atomic force acoustic microscopy (AFAM) is a type of scanning probe microscopy (SPM). It is a combination of acoustics and atomic force microscopy. The principal difference between AFAM and other forms of SPM is the addition of a transducer at the bottom of the sample which induces longitudinal out-of-plane vibrations in the specimen. These vibrations are sensed by a cantilever and tip called a probe. The figure shown here is the clear schematic of AFAM principle here B is the magnified version of the tip and sample placed on the transducer and tip having some optical coating generally gold coating to reflect the laser light on to the photodiode.

<span class="mw-page-title-main">Scanning near-field ultrasound holography</span>

Scanning near-field ultrasound holography (SNFUH) is a method for performing nondestructive nano-scale high-resolution imaging of buried and embedded structures. SNFUH is critical for analysis of materials, structures and phenomena as they continue to shrink at the micro/nano scale. SNFUH is a type of scanning probe microscopy (SPM) technique that provides depth information as well as spatial resolution at the 10 to 100 nm scale.

Reflectometry is a general term for the use of the reflection of waves or pulses at surfaces and interfaces to detect or characterize objects, sometimes to detect anomalies as in fault detection and medical diagnosis.

Super-resolution photoacoustic imaging is a set of techniques used to enhance spatial resolution in photoacoustic imaging. Specifically, these techniques primarily break the optical diffraction limit of the photoacoustic imaging system. It can be achieved in a variety of mechanisms, such as blind structured illumination, multi-speckle illumination, or photo-imprint photoacoustic microscopy in Figure 1.

<span class="mw-page-title-main">Photoacoustic microscopy</span>

Photoacoustic microscopy is an imaging method based on the photoacoustic effect and is a subset of photoacoustic tomography. Photoacoustic microscopy takes advantage of the local temperature rise that occurs as a result of light absorption in tissue. Using a nanosecond pulsed laser beam, tissues undergo thermoelastic expansion, resulting in the release of a wide-band acoustic wave that can be detected using a high-frequency ultrasound transducer. Since ultrasonic scattering in tissue is weaker than optical scattering, photoacoustic microscopy is capable of achieving high-resolution images at greater depths than conventional microscopy methods. Furthermore, photoacoustic microscopy is especially useful in the field of biomedical imaging due to its scalability. By adjusting the optical and acoustic foci, lateral resolution may be optimized for the desired imaging depth.

A specific branch of contrast-enhanced ultrasound, acoustic angiography is a minimally invasive and non-ionizing medical imaging technique used to visualize vasculature. Acoustic angiography was first developed by the Dayton Laboratory at North Carolina State University and provides a safe, portable, and inexpensive alternative to the most common methods of angiography such as Magnetic Resonance Angiography and Computed Tomography Angiography. Although ultrasound does not traditionally exhibit the high resolution of MRI or CT, high-frequency ultrasound (HFU) achieves relatively high resolution by sacrificing some penetration depth. HFU typically uses waves between 20 and 100 MHz and achieves resolution of 16-80μm at depths of 3-12mm. Although HFU has exhibited adequate resolution to monitor things like tumor growth in the skin layers, on its own it lacks the depth and contrast necessary for imaging blood vessels. Acoustic angiography overcomes the weaknesses of HFU by combining contrast-enhanced ultrasound with the use of a dual-element ultrasound transducer to achieve high resolution visualization of blood vessels at relatively deep penetration levels.

References

  1. Lemons R. A.; Quate C. F. (1974). "Acoustic microscope—scanning version". Appl. Phys. Lett. 24 (4): 163–165. Bibcode:1974ApPhL..24..163L. doi:10.1063/1.1655136.
  2. 7. R. Gr. Maev, Principles and Future of Acoustic Microscopy, Proceedings of the Joint Soviet-West Germany International Symposium on Microscope Photometry and Acoustic Microscopy in Science, Moscow, Russia, 1-12, 1985
  3. M. Hoppe, R. Gr. Maev, Editors and Co-authors, Microscope Photometry and Acoustic Microscopy in Science, Proceedings of the FRG-USSR Symposium, Moscow, 231 pages, 1985.
  4. Hoppe, M., and Bereiter-Hahn, J., “Applications of scanning acoustic microscopy - survey and new aspects,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 32 (2), 289 –301 (1985)
  5. 1 2 R.Gr. Maev, Editor and Co-author, Advances in Acoustic Microscopy and High Resolution Ultrasonic Imaging: From Principles to New Applications, Monograph, 14 Chapters, 400 pages, Wiley & Son - VCH, April 2013
  6. 1 2 3 4 5 6 7 Bertocci, Francesco; Grandoni, Andrea; Djuric-Rissner, Tatjana (November 2019). "Scanning Acoustic Microscopy (SAM): A Robust Method for Defect Detection during the Manufacturing Process of Ultrasound Probes for Medical Imaging". Sensors. 19 (22): 4868. Bibcode:2019Senso..19.4868B. doi: 10.3390/s19224868 . PMC   6891697 . PMID   31717317. CC BY icon-80x15.png  This article incorporates textfrom this source, which is available under the CC BY 4.0 license.
  7. Bereiter-Hahn J; Karl I; Lüers H; Vöth M (1995). "Mechanical basis of cell shape: investigations with the scanning acoustic microscope". Biochem. Cell Biol. 73 (7–8): 337–48. doi:10.1139/o95-042. PMID   8703407.
  8. Lüers H; Hillmann K; Litniewski J; Bereiter-Hahn J (1991). "Acoustic microscopy of cultured cells. Distribution of forces and cytoskeletal elements". Cell Biophys. 18 (3): 279–93. doi:10.1007/BF02989819. PMID   1726537. S2CID   11466285.
  9. Hildebrand JA; Rugar D; Johnston RN; Quate CF (1981). "Acoustic microscopy of living cells". Proc. Natl. Acad. Sci. U.S.A. 78 (3): 1656–60. Bibcode:1981PNAS...78.1656H. doi: 10.1073/pnas.78.3.1656 . PMC   319191 . PMID   6940179.
  10. Johnston RN; Atalar A; Heiserman J; Jipson V; Quate CF (1979). "Acoustic microscopy: resolution of subcellular detail". Proc. Natl. Acad. Sci. U.S.A. 76 (7): 3325–9. Bibcode:1979PNAS...76.3325J. doi: 10.1073/pnas.76.7.3325 . PMC   383818 . PMID   291006.
  11. Condliffe, Jamie; Schiffter, Heiko; Coussios, Constantin C (2008). "An acoustic technique for mapping and sizing particles following needle-free transdermal drug and vaccine delivery". Journal of the Acoustical Society of America . 123 (5): 3001. Bibcode:2008ASAJ..123.3001C. doi:10.1121/1.2932570.
  12. Vogt, M., and Ermert, H., “Limited-angle spatial compounding imaging of skin with high-frequency ultrasound,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 55 (9), 1975 –1983 (2011)