Scolopidia

Last updated
Left: Frontal view of a small fruit fly antenna. The scolopidia in the second segment (a2, pedicel) with their neurons are illustrated. Sound energy absorption leads to vibration of the arista and rotation of the third segment a3. The rotation leads to deformation of the scolopidia, leading to activation or deactivation. Right: The antenna located on the head of the fruit fly. JO1cropped.png
Left: Frontal view of a small fruit fly antenna. The scolopidia in the second segment (a2, pedicel) with their neurons are illustrated. Sound energy absorption leads to vibration of the arista and rotation of the third segment a3. The rotation leads to deformation of the scolopidia, leading to activation or deactivation. Right: The antenna located on the head of the fruit fly.

A scolopidium (historically, scolopophore) is the fundamental unit of a mechanoreceptor organ in insects. It is a composition of three cells: a scolopale cap cell which caps the scolopale cell, and a bipolar sensory nerve cell.

Contents

The general term of these overall sense organs is the chordotonal organs, with the scolopidia usually lying just under the exoskeleton. Scolopidia may be located within:

There are many types of scolopidia, depending on the sense organ in which they belong.

Mechanosensation

Function

Scolopidia are sensitive to mechanical disturbances, such as sound (vibrations of the air) or substrate vibrations (vibrations of surrounding solid material), depending on the structure of the overall sense organ in which they reside. While many species using mechanoreceptors to transduce and locate sources of sound, functions such as detecting gravitational forces or airflow have also been demonstrated. [3] Airflow direction detection by mechanoreceptors appears to be key in the navigational behavior of flying insects, particularly in environments with slow or absent visual feedback. [4] [5]

A single individual may possess scolopidia that are capable of sensing a range of low to high frequencies. This enables a single organ to serve multiple functions, ranging from gravity sensing to acoustic sensing. [3]

Physiology

Scolopidia ultimately convert mechanical vibration into a nerve impulse, which is sent on to higher ganglion where the information is combined and/or processed into a resultant behavior. Mechanosensory information received by scolopidia is typically transduced faster than visual feedback, [3] due to the physical mechanism of activating a neural impulse. Sensory neurons coupled to scolopidia are also of larger diameter, increasing conduction rate. [3]

In some moths, honeybees, and fruit flies, projections from scolopidia in Johnston's organs project directly to regions in the brain.

Types of scolopidia

Classification and nomenclature of cells is not always uniform. [6]

Scolopidia may be classified by their location:

Classification may also be performed based on the ciliary processes of the cells: [7]

Scolopidia sensory cells may also be grouped by structure, location, and number of sensory cells (e.g. two, or three). [2]

Locations

Integumental scolopidia are found in the subgenual organ (also known as the supratympanal organ), subintegumental scolopidia are found in the crista acustica and the intermediate organ.

The subgenual organ ('organ below the knee') is found in all insects legs, and the probably an evolutionary artifact of prior insect body-types which used their legs to detect vibrations from the substrate (viz., treehoppers). The intermediate organ and the crista acustica, on the other hand, are only found where there is a tympanum, such as on the front legs of insects.

Number diversity

Swarming insects must detect the wing sounds of conspecifics in order to identify potential mates, and do so by using vibrations present in the air. [3] The antennal Johnston's organ in swarming Diptera (e.g. midges and mosquitos) may contain tens of thousands of scolopophorous sense cells, which are grouped by two's or three's into individual scolopidia. [2] The high number of scolopidia in Johnston's organ provides an evolutionary advantage in acoustically identifying and locating mates.

Non-swarming insects accordingly possess less scolopidia. Certain Hemiptera and Diptera may possess as few as 25 scolopidia.

See also

Related Research Articles

<span class="mw-page-title-main">Halteres</span> Pair of small club-shaped insect organs

Halteres are a pair of small club-shaped organs on the body of two orders of flying insects that provide information about body rotations during flight. Insects of the large order Diptera (flies) have halteres which evolved from a pair of ancestral hindwings, while males of the much smaller order Strepsiptera (stylops) have halteres which evolved from a pair of ancestral forewings.

<span class="mw-page-title-main">Antenna (biology)</span> Paired appendages used for sensing in arthropods

Antennae, sometimes referred to as "feelers", are paired appendages used for sensing in arthropods.

A mechanoreceptor, also called mechanoceptor, is a sensory receptor that responds to mechanical pressure or distortion. Mechanoreceptors are innervated by sensory neurons that convert mechanical pressure into electrical signals that, in animals, are sent to the central nervous system.

<span class="mw-page-title-main">Range fractionation</span>

Range fractionation is a term used in biology to describe the way by which a group of sensory neurons are able to encode varying magnitudes of a stimulus. Sense organs are usually composed of many sensory receptors measuring the same property. These sensory receptors show a limited degree of precision due to an upper limit in firing rate. If the receptors are endowed with distinct transfer functions in such a way that the points of highest sensitivity are scattered along the axis of the quality being measured, the precision of the sense organ as a whole can be increased.

Johnston's organ is a collection of sensory cells found in the pedicel of the antennae in the class Insecta. Johnston's organ detects motion in the flagellum. It consists of scolopidia arrayed in a bowl shape, each of which contains a mechanosensory chordotonal neuron. The number of scolopidia varies between species. In homopterans, the Johnston's organs contain 25 - 79 scolopidia. The presence of Johnston's organ is a defining characteristic which separates the class Insecta from the other hexapods belonging to the group Entognatha. Johnston's organ was named after the physician Christopher Johnston, father of the physician and Assyriologist Christopher Johnston.

Merkel nerve endings are mechanoreceptors, a type of sensory receptor, that are found in the basal epidermis and hair follicles. They are nerve endings and provide information on mechanical pressure, position, and deep static touch features, such as shapes and edges.

<span class="mw-page-title-main">Campaniform sensilla</span> Class of mechanoreceptors found in insects

Campaniform sensilla are a class of mechanoreceptors found in insects, which respond to local stress and strain within the animal's cuticle. Campaniform sensilla function as proprioceptors that detect mechanical load as resistance to muscle contraction, similar to mammalian Golgi tendon organs. Sensory feedback from campaniform sensilla is integrated in the control of posture and locomotion.

<span class="mw-page-title-main">Glossary of entomology terms</span> List of definitions of terms and concepts commonly used in the study of entomology

This glossary of entomology describes terms used in the formal study of insect species by entomologists.

Chordotonal organs are stretch receptor organs found only in insects and crustaceans. They are located at most joints and are made up of clusters of scolopidia that either directly or indirectly connect two joints and sense their movements relative to one another. They can have both extero- and proprioceptive functions, for example sensing auditory stimuli or leg movement. The word was coined by Vitus Graber in 1882, though he interpreted them as being stretched between two points like a string, sensing vibrations through resonance.

<span class="mw-page-title-main">Tympanal organ</span> Hearing organ in insects

A tympanal organ is a hearing organ in insects, consisting of a membrane (tympanum) stretched across a frame backed by an air sac and associated sensory neurons. Sounds vibrate the membrane, and the vibrations are sensed by a chordotonal organ. Hymenoptera do not have a tympanal organ, but they do have a Johnston's organ.

A sensillum is an arthropod sensory organ protruding from the cuticle of exoskeleton, or sometimes lying within or beneath it. Sensilla appear as small hairs or pegs over an individual's body. Inside each sensillum there are two to four sensory neurons. These neurons, or receptors, gather information about environment the arthropod is in:

<span class="mw-page-title-main">Arista (insect anatomy)</span> Bristle arising from the third antennal segment of an insect

In insect anatomy the arista is a simple or variously modified apical or subapical bristle, arising from the third antennal segment. It is the evolutionary remains of antennal segments, and may sometimes show signs of segmentation. These segments are called aristameres. The arista may be bare and thin, sometime appearing no more than a simple bristle; pubescent, covered in short hairs; or plumose, covered in long hairs.

A sense is a biological system used by an organism for sensation, the process of gathering information about the world through the detection of stimuli. Although in some cultures five human senses were traditionally identified as such, many more are now recognized. Senses used by non-human organisms are even greater in variety and number. During sensation, sense organs collect various stimuli for transduction, meaning transformation into a form that can be understood by the brain. Sensation and perception are fundamental to nearly every aspect of an organism's cognition, behavior and thought.

Crista acustica is a part of the hearing organ in some insects. It is a collection of sensory cells that form a crest on top of the hollow tube behind the hearing membrane (tympanum) on the legs of the insect.

TRPN is a member of the transient receptor potential channel family of ion channels, which is a diverse group of proteins thought to be involved in mechanoreception. The TRPN gene was given the name no mechanoreceptor potential C (nompC) when it was first discovered in fruit flies, hence the N in TRPN. Since its discovery in fruit flies, TRPN homologs have been discovered and characterized in worms, frogs, and zebrafish.

Dipteran morphology differs in some significant ways from the broader morphology of insects. The Diptera is a very large and diverse order of mostly small to medium-sized insects. They have prominent compound eyes on a mobile head, and one pair of functional, membraneous wings, which are attached to a complex mesothorax. The second pair of wings, on the metathorax, are reduced to halteres. The order's fundamental peculiarity is its remarkable specialization in terms of wing shape and the morpho-anatomical adaptation of the thorax – features which lend particular agility to its flying forms. The filiform, stylate or aristate antennae correlate with the Nematocera, Brachycera and Cyclorrhapha taxa respectively. It displays substantial morphological uniformity in lower taxa, especially at the level of genus or species. The configuration of integumental bristles is of fundamental importance in their taxonomy, as is wing venation. It displays a complete metamorphosis, or holometabolous development. The larvae are legless, and have head capsules with mandibulate mouthparts in the Nematocera. The larvae of "higher flies" (Brachycera) are however headless and wormlike, and display only three instars. Pupae are obtect in the Nematocera, or coarcate in Brachycera.

<span class="mw-page-title-main">Subgenual organ</span>

The subgenual organ is an organ in insects that is involved in the perception of sound. The name refers to the location of the organ just below the knee in the tibia of all legs in most insects.

Hair-plates are a type of proprioceptor found in the folds of insect joints. They consist of a cluster of hairs, in which each hair is innervated by a single mechanosensory neuron. Functionally, hair-plates operate as "limit-detectors" by signaling the extreme ranges of motion of a joint.

A mechanoreceptor is a sensory organ or cell that responds to mechanical stimulation such as touch, pressure, vibration, and sound from both the internal and external environment. Mechanoreceptors are well-documented in animals and are integrated into the nervous system as sensory neurons. While plants do not have nerves or a nervous system like animals, they also contain mechanoreceptors that perform a similar function. Mechanoreceptors detect mechanical stimulus originating from within the plant (intrinsic) and from the surrounding environment (extrinsic). The ability to sense vibrations, touch, or other disturbance is an adaptive response to herbivory and attack so that the plant can appropriately defend itself against harm. Mechanoreceptors can be organized into three levels: molecular, cellular, and organ-level.

<span class="mw-page-title-main">Femoral chordotonal organ</span> Sensory organ in insect legs

The femoral chordotonal organ is a group of mechanosensory neurons found in an insect leg that detects the movements and the position of the femur/tibia joint. It is thought to function as a proprioceptor that is critical for precise control of leg position by sending the information regarding the femur/tibia joint to the motor circuits in the ventral nerve cord and the brain

References

  1. The Insects: An Outline of Entomology, P. J. Gullan, Peter Cranston.
  2. 1 2 3 Saeng Boo, K., Richards, A.G. (29 July 1975). "Fine structure of the scolopidia in the Johnston's organ of male Aedes aegypti (L.) (Diptera: Culicidae)". Int. J. Insect Morphol. Embryol. 4 (6): 549–566. doi:10.1016/0020-7322(75)90031-8.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. 1 2 3 4 5 Krishnan, Anand; Sane, Sanjay P. (2015-01-01), Jurenka, Russell (ed.), "Chapter Three - Antennal Mechanosensors and Their Evolutionary Antecedents", Advances in Insect Physiology, Academic Press, 49: 59–99, doi:10.1016/bs.aiip.2015.06.003
  4. Budick; et al. (207). "The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster". J. Exp. Biol. 210 (Pt 23): 4092–4103. doi: 10.1242/jeb.006502 . PMID   18025010.
  5. Sane; et al. (2007). "Antennal mechanosensors mediate flight control in moths". Science. 315 (5813): 863–866. Bibcode:2007Sci...315..863S. doi:10.1126/science.1133598. PMID   17290001. S2CID   2429129.
  6. Methods in insect sensory neuroscience, Thomas A. Christensen
  7. J.S. Vande Berg (1971). "Fine structural studies of Johnston's organ in tobacco hornworm moth, Manduca sexta (Johansson)". J. Morphol. 133 (4): 439–455. doi:10.1002/jmor.1051330407. PMID   30366495. S2CID   196607109.