Section formula Last updated January 03, 2026 Internal divisions Internal division with section formula If point P (lying on AB) divides the line segment AB joining the points A ( x 1 , y 1 ) {\displaystyle \mathrm {A} (x_{1},y_{1})} and B ( x 2 , y 2 ) {\displaystyle \mathrm {B} (x_{2},y_{2})} in the ratio m:n, then
P = ( m x 2 + n x 1 m + n , m y 2 + n y 1 m + n ) {\displaystyle P=\left({\frac {mx_{2}+nx_{1}}{m+n}},{\frac {my_{2}+ny_{1}}{m+n}}\right)} [ 6]
The ratio m:n can also be written as m / n : 1 {\displaystyle m/n:1} , or k : 1 {\displaystyle k:1} , where k = m / n {\displaystyle k=m/n} . So, the coordinates of point P {\displaystyle P} dividing the line segment joining the points A ( x 1 , y 1 ) {\displaystyle \mathrm {A} (x_{1},y_{1})} and B ( x 2 , y 2 ) {\displaystyle \mathrm {B} (x_{2},y_{2})} are:
( m x 2 + n x 1 m + n , m y 2 + n y 1 m + n ) {\displaystyle \left({\frac {mx_{2}+nx_{1}}{m+n}},{\frac {my_{2}+ny_{1}}{m+n}}\right)}
= ( m n x 2 + x 1 m n + 1 , m n y 2 + y 1 m n + 1 ) {\displaystyle =\left({\frac {{\frac {m}{n}}x_{2}+x_{1}}{{\frac {m}{n}}+1}},{\frac {{\frac {m}{n}}y_{2}+y_{1}}{{\frac {m}{n}}+1}}\right)}
= ( k x 2 + x 1 k + 1 , k y 2 + y 1 k + 1 ) {\displaystyle =\left({\frac {kx_{2}+x_{1}}{k+1}},{\frac {ky_{2}+y_{1}}{k+1}}\right)} [ 4] [ 5]
Similarly, the ratio can also be written as k : ( 1 − k ) {\displaystyle k:(1-k)} , and the coordinates of P are ( ( 1 − k ) x 1 + k x 2 , ( 1 − k ) y 1 + k y 2 ) {\displaystyle ((1-k)x_{1}+kx_{2},(1-k)y_{1}+ky_{2})} . [ 1]
Proof Triangles P A Q ∼ B P C {\displaystyle PAQ\sim BPC} .
A P B P = A Q C P = P Q B C m n = x − x 1 x 2 − x = y − y 1 y 2 − y m x 2 − m x = n x − n x 1 , m y 2 − m y = n y − n y 1 m x + n x = m x 2 + n x 1 , m y + n y = m y 2 + n y 1 ( m + n ) x = m x 2 + n x 1 , ( m + n ) y = m y 2 + n y 1 x = m x 2 + n x 1 m + n , y = m y 2 + n y 1 m + n {\displaystyle {\begin{aligned}{\frac {AP}{BP}}={\frac {AQ}{CP}}={\frac {PQ}{BC}}\\{\frac {m}{n}}={\frac {x-x_{1}}{x_{2}-x}}={\frac {y-y_{1}}{y_{2}-y}}\\mx_{2}-mx=nx-nx_{1},my_{2}-my=ny-ny_{1}\\mx+nx=mx_{2}+nx_{1},my+ny=my_{2}+ny_{1}\\(m+n)x=mx_{2}+nx_{1},(m+n)y=my_{2}+ny_{1}\\x={\frac {mx_{2}+nx_{1}}{m+n}},y={\frac {my_{2}+ny_{1}}{m+n}}\\\end{aligned}}} External divisions External division with section formula If a point P (lying on the extension of AB) divides AB in the ratio m:n then
P = ( m x 2 − n x 1 m − n , m y 2 − n y 1 m − n ) {\displaystyle P=\left({\dfrac {mx_{2}-nx_{1}}{m-n}},{\dfrac {my_{2}-ny_{1}}{m-n}}\right)} [ 6]
Proof Triangles P A C ∼ P B D {\displaystyle PAC\sim PBD} (Let C and D be two points where A & P and B & P intersect respectively). Therefore ∠ACP = ∠BDP
A B B P = A C B D = P C P D m n = x − x 1 x − x 2 = y − y 1 y − y 2 m x − m x 2 = n x − n x 1 , m y − m y 2 = n y − n y 1 m x − n x = m x 2 − n x 1 , m y − n y = m y 2 − n y 1 ( m − n ) x = m x 2 − n x 1 , ( m − n ) y = m y 2 − n y 1 x = m x 2 − n x 1 m − n , y = m y 2 − n y 1 m − n {\displaystyle {\begin{aligned}{\frac {AB}{BP}}={\frac {AC}{BD}}={\frac {PC}{PD}}\\{\frac {m}{n}}={\frac {x-x_{1}}{x-x_{2}}}={\frac {y-y_{1}}{y-y_{2}}}\\mx-mx_{2}=nx-nx_{1},my-my_{2}=ny-ny_{1}\\mx-nx=mx_{2}-nx_{1},my-ny=my_{2}-ny_{1}\\(m-n)x=mx_{2}-nx_{1},(m-n)y=my_{2}-ny_{1}\\x={\frac {mx_{2}-nx_{1}}{m-n}},y={\frac {my_{2}-ny_{1}}{m-n}}\\\end{aligned}}}
The midpoint of a line segment divides it internally in the ratio 1 : 1 {\textstyle 1:1} . Applying the Section formula for internal division: [ 4] [ 5]
P = ( x 1 + x 2 2 , y 1 + y 2 2 ) {\displaystyle P=\left({\dfrac {x_{1}+x_{2}}{2}},{\dfrac {y_{1}+y_{2}}{2}}\right)}
Derivation P = ( m x 2 + n x 1 m + n , m y 2 + n y 1 m + n ) {\displaystyle P=\left({\dfrac {mx_{2}+nx_{1}}{m+n}},{\dfrac {my_{2}+ny_{1}}{m+n}}\right)}
= ( 1 ⋅ x 1 + 1 ⋅ x 2 1 + 1 , 1 ⋅ y 1 + 1 ⋅ y 2 1 + 1 ) {\displaystyle =\left({\frac {1\cdot x_{1}+1\cdot x_{2}}{1+1}},{\frac {1\cdot y_{1}+1\cdot y_{2}}{1+1}}\right)}
= ( x 1 + x 2 2 , y 1 + y 2 2 ) {\displaystyle =\left({\dfrac {x_{1}+x_{2}}{2}},{\dfrac {y_{1}+y_{2}}{2}}\right)}
Centroid Centroid of a triangle The centroid of a triangle is the intersection of the medians and divides each median in the ratio 2 : 1 {\textstyle 2:1} . Let the vertices of the triangle be A ( x 1 , y 1 ) {\displaystyle A(x_{1},y_{1})} , B ( x 2 , y 2 ) {\textstyle B(x_{2},y_{2})} and C ( x 3 , y 3 ) {\textstyle C(x_{3},y_{3})} . So, a median from point A will intersect BC at ( x 2 + x 3 2 , y 2 + y 3 2 ) {\textstyle \left({\frac {x_{2}+x_{3}}{2}},{\frac {y_{2}+y_{3}}{2}}\right)} . Using the section formula, the centroid becomes:
( x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 ) {\displaystyle \left({\frac {x_{1}+x_{2}+x_{3}}{3}},{\frac {y_{1}+y_{2}+y_{3}}{3}}\right)} In three dimensions Let A and B be two points with Cartesian coordinates (x1 , y1 , z1 ) and (x2 , y2 , z2 ) and P be a point on the line through A and B. If A P : P B = m : n {\displaystyle AP:PB=m:n} . Then the section formula gives the coordinates of P as
( m x 2 + n x 1 m + n , m y 2 + n y 1 m + n , m z 2 + n z 1 m + n ) {\displaystyle \left({\frac {mx_{2}+nx_{1}}{m+n}},{\frac {my_{2}+ny_{1}}{m+n}},{\frac {mz_{2}+nz_{1}}{m+n}}\right)} [ 1] If, instead, P is a point on the line such that A P : P B = k : 1 − k {\displaystyle AP:PB=k:1-k} , its coordinates are ( ( 1 − k ) x 1 + k x 2 , ( 1 − k ) y 1 + k y 2 , ( 1 − k ) z 1 + k z 2 ) {\displaystyle ((1-k)x_{1}+kx_{2},(1-k)y_{1}+ky_{2},(1-k)z_{1}+kz_{2})} . [ 1]
References 1 2 3 4 5 Clapham, Christopher; Nicholson, James (2014-09-18), "section formulae" , The Concise Oxford Dictionary of Mathematics , Oxford University Press, doi :10.1093/acref/9780199679591.001.0001 , ISBN 978-0-19-967959-1 , retrieved 2020-10-30 ↑ "Section Formula | Brilliant Math & Science Wiki" . brilliant.org . Retrieved 2020-10-16 . ↑ "Coordinate Geometry" (PDF) . Archived (PDF) from the original on 2016-06-26. Retrieved 2020-10-16 . 1 2 3 Aggarwal, R.S. Secondary School Mathematics for Class 10 . Bharti Bhawan Publishers & Distributors (1 January 2020). ISBN 978-9388704519 . 1 2 3 Sharma, R.D. Mathematics for Class 10 . Dhanpat Rai Publication (1 January 2020). ISBN 978-8194192640 . 1 2 Loney, S L. The Elements of Coordinate Geometry (Part-1) . 1 2 "Vector Algebra" (PDF) . Archived (PDF) from the original on 2016-12-13. Retrieved 2020-10-30 . This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.