Semantic mapping (SM) is a statistical method for dimensionality reduction (the transformation of data from a high-dimensional space into a low-dimensional space). SM can be used in a set of multidimensional vectors of features to extract a few new features that preserves the main data characteristics.
SM performs dimensionality reduction by clustering the original features in semantic clusters and combining features mapped in the same cluster to generate an extracted feature. Given a data set, this method constructs a projection matrix that can be used to map a data element from a high-dimensional space into a reduced dimensional space.
SM can be applied in construction of text mining and information retrieval systems, as well as systems managing vectors of high dimensionality. SM is an alternative to random mapping, principal components analysis and latent semantic indexing methods.
Information retrieval (IR) in computing and information science is the task of identifying and retrieving information system resources that are relevant to an information need. The information need can be specified in the form of a search query. In the case of document retrieval, queries can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds.
Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable, i.e., multivariate random variables. Multivariate statistics concerns understanding the different aims and background of each of the different forms of multivariate analysis, and how they relate to each other. The practical application of multivariate statistics to a particular problem may involve several types of univariate and multivariate analyses in order to understand the relationships between variables and their relevance to the problem being studied.
Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.
A self-organizing map (SOM) or self-organizing feature map (SOFM) is an unsupervised machine learning technique used to produce a low-dimensional representation of a higher-dimensional data set while preserving the topological structure of the data. For example, a data set with variables measured in observations could be represented as clusters of observations with similar values for the variables. These clusters then could be visualized as a two-dimensional "map" such that observations in proximal clusters have more similar values than observations in distal clusters. This can make high-dimensional data easier to visualize and analyze.
Nonlinear dimensionality reduction, also known as manifold learning, is any of various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.
Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension. Working in high-dimensional spaces can be undesirable for many reasons; raw data are often sparse as a consequence of the curse of dimensionality, and analyzing the data is usually computationally intractable. Dimensionality reduction is common in fields that deal with large numbers of observations and/or large numbers of variables, such as signal processing, speech recognition, neuroinformatics, and bioinformatics.
Latent semantic analysis (LSA) is a technique in natural language processing, in particular distributional semantics, of analyzing relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms. LSA assumes that words that are close in meaning will occur in similar pieces of text. A matrix containing word counts per document is constructed from a large piece of text and a mathematical technique called singular value decomposition (SVD) is used to reduce the number of rows while preserving the similarity structure among columns. Documents are then compared by cosine similarity between any two columns. Values close to 1 represent very similar documents while values close to 0 represent very dissimilar documents.
Generative topographic map (GTM) is a machine learning method that is a probabilistic counterpart of the self-organizing map (SOM), is probably convergent and does not require a shrinking neighborhood or a decreasing step size. It is a generative model: the data is assumed to arise by first probabilistically picking a point in a low-dimensional space, mapping the point to the observed high-dimensional input space, then adding noise in that space. The parameters of the low-dimensional probability distribution, the smooth map and the noise are all learned from the training data using the expectation-maximization (EM) algorithm. GTM was introduced in 1996 in a paper by Christopher Bishop, Markus Svensen, and Christopher K. I. Williams.
A document-term matrix is a mathematical matrix that describes the frequency of terms that occur in each document in a collection. In a document-term matrix, rows correspond to documents in the collection and columns correspond to terms. This matrix is a specific instance of a document-feature matrix where "features" may refer to other properties of a document besides terms. It is also common to encounter the transpose, or term-document matrix where documents are the columns and terms are the rows. They are useful in the field of natural language processing and computational text analysis.
Probabilistic latent semantic analysis (PLSA), also known as probabilistic latent semantic indexing is a statistical technique for the analysis of two-mode and co-occurrence data. In effect, one can derive a low-dimensional representation of the observed variables in terms of their affinity to certain hidden variables, just as in latent semantic analysis, from which PLSA evolved.
For data analysis, Random mapping (RM) is a fast dimensionality reduction method categorized as feature extraction method. The RM consists in generation of a random matrix that is multiplied by each original vector and result in a reduced vector. When the data vectors are high-dimensional it is computationally infeasible to use data analysis or pattern recognition algorithms which repeatedly compute similarities or distances in the original data space. It is therefore necessary to reduce the dimensionality before, for example, clustering the data. In a text mining context, it is demonstrated that the document classification accuracy obtained after the dimensionality has been reduced using a random mapping method will be almost as good as the original accuracy if the final dimensionality is sufficiently large. In fact, it can be shown that the inner product (similarity) between the mapped vectors follows closely the inner product of the original vectors.
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data. An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation. The autoencoder learns an efficient representation (encoding) for a set of data, typically for dimensionality reduction.
Distributional semantics is a research area that develops and studies theories and methods for quantifying and categorizing semantic similarities between linguistic items based on their distributional properties in large samples of language data. The basic idea of distributional semantics can be summed up in the so-called distributional hypothesis: linguistic items with similar distributions have similar meanings.
Latent semantic mapping (LSM) is a data-driven framework to model globally meaningful relationships implicit in large volumes of data. It is a generalization of latent semantic analysis. In information retrieval, LSA enables retrieval on the basis of conceptual content, instead of merely matching words between queries and documents.
Multimedia information retrieval is a research discipline of computer science that aims at extracting semantic information from multimedia data sources. Data sources include directly perceivable media such as audio, image and video, indirectly perceivable sources such as text, semantic descriptions, biosignals as well as not perceivable sources such as bioinformation, stock prices, etc. The methodology of MMIR can be organized in three groups:
Random indexing is a dimensionality reduction method and computational framework for distributional semantics, based on the insight that very-high-dimensional vector space model implementations are impractical, that models need not grow in dimensionality when new items are encountered, and that a high-dimensional model can be projected into a space of lower dimensionality without compromising L2 distance metrics if the resulting dimensions are chosen appropriately.
In natural language processing (NLP), a word embedding is a representation of a word. The embedding is used in text analysis. Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. Word embeddings can be obtained using language modeling and feature learning techniques, where words or phrases from the vocabulary are mapped to vectors of real numbers.
In mathematics and statistics, random projection is a technique used to reduce the dimensionality of a set of points which lie in Euclidean space. According to theoretical results, random projection preserves distances well, but empirical results are sparse. They have been applied to many natural language tasks under the name random indexing.
The following outline is provided as an overview of and topical guide to machine learning:
A latent space, also known as a latent feature space or embedding space, is an embedding of a set of items within a manifold in which items resembling each other are positioned closer to one another. Position within the latent space can be viewed as being defined by a set of latent variables that emerge from the resemblances from the objects.