Series multisection

Last updated

In mathematics, a multisection of a power series is a new power series composed of equally spaced terms extracted unaltered from the original series. Formally, if one is given a power series

Contents

then its multisection is a power series of the form

where p, q are integers, with 0 ≤ p < q. Series multisection represents one of the common transformations of generating functions.

Multisection of analytic functions

A multisection of the series of an analytic function

has a closed-form expression in terms of the function :

where is a primitive q-th root of unity. This expression is often called a root of unity filter. This solution was first discovered by Thomas Simpson. [1] This expression is especially useful in that it can convert an infinite sum into a finite sum. It is used, for example, in a key step of a standard proof of Gauss's digamma theorem, which gives a closed-form solution to the digamma function evaluated at rational values p/q.

Examples

Bisection

In general, the bisections of a series are the even and odd parts of the series.

Geometric series

Consider the geometric series

By setting in the above series, its multisections are easily seen to be

Remembering that the sum of the multisections must equal the original series, we recover the familiar identity

Exponential function

The exponential function

by means of the above formula for analytic functions separates into

The bisections are trivially the hyperbolic functions:

Higher order multisections are found by noting that all such series must be real-valued along the real line. By taking the real part and using standard trigonometric identities, the formulas may be written in explicitly real form as

These can be seen as solutions to the linear differential equation with boundary conditions , using Kronecker delta notation. In particular, the trisections are

and the quadrisections are

Binomial series

Multisection of a binomial expansion

at x = 1 gives the following identity for the sum of binomial coefficients with step q:

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .

<span class="mw-page-title-main">Hyperbolic functions</span> Collective name of 6 mathematical functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

In mathematics, de Moivre's formula states that for any real number x and integer n it holds that

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.

In probability and statistics, a circular distribution or polar distribution is a probability distribution of a random variable whose values are angles, usually taken to be in the range [0, 2π). A circular distribution is often a continuous probability distribution, and hence has a probability density, but such distributions can also be discrete, in which case they are called circular lattice distributions. Circular distributions can be used even when the variables concerned are not explicitly angles: the main consideration is that there is not usually any real distinction between events occurring at the opposite ends of the range, and the division of the range could notionally be made at any point.

In mathematics, Mathieu functions, sometimes called angular Mathieu functions, are solutions of Mathieu's differential equation

<span class="mw-page-title-main">Trigamma function</span> Mathematical function

In mathematics, the trigamma function, denoted ψ1(z) or ψ(1)(z), is the second of the polygamma functions, and is defined by

In mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa Ramanujan.

In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. The study of logarithms of matrices leads to Lie theory since when a matrix has a logarithm then it is in an element of a Lie group and the logarithm is the corresponding element of the vector space of the Lie algebra.

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

<span class="mw-page-title-main">Toroidal coordinates</span>

Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .

In complex analysis, a partial fraction expansion is a way of writing a meromorphic function as an infinite sum of rational functions and polynomials. When is a rational function, this reduces to the usual method of partial fractions.

<span class="mw-page-title-main">Occurrences of Grandi's series</span>

This article lists occurrences of the paradoxical infinite "sum" +1 -1 +1 -1 ..., sometimes called Grandi's series.

<span class="mw-page-title-main">Wrapped Cauchy distribution</span>

In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.

<span class="mw-page-title-main">Bending of plates</span> Deformation of slabs under load

Bending of plates, or plate bending, refers to the deflection of a plate perpendicular to the plane of the plate under the action of external forces and moments. The amount of deflection can be determined by solving the differential equations of an appropriate plate theory. The stresses in the plate can be calculated from these deflections. Once the stresses are known, failure theories can be used to determine whether a plate will fail under a given load.

References

  1. Simpson, Thomas (1757). "CIII. The invention of a general method for determining the sum of every 2d, 3d, 4th, or 5th, &c. term of a series, taken in order; the sum of the whole series being known". Philosophical Transactions of the Royal Society of London. 51: 757–759. doi: 10.1098/rstl.1757.0104 .