Servo control

Last updated
Servo and receiver connections Rc-receiver-servo-battery b.jpg
Servo and receiver connections
A diagram showing typical PWM timing for a servomotor Servomotor Timing Diagram.svg
A diagram showing typical PWM timing for a servomotor

Servo control is a method of controlling many types of RC/hobbyist servos by sending the servo a PWM (pulse-width modulation) signal, a series of repeating pulses of variable width where either the width of the pulse (most common modern hobby servos) or the duty cycle of a pulse train (less common today) determines the position to be achieved by the servo. The PWM signal might come from a radio control receiver to the servo or from common microcontrollers such as the Arduino.

Contents

Small hobby servos (often called radio control, or RC servos) are connected through a standard three-wire connection: two wires for a DC power supply and one for control, carrying the control pulses.

The parameters for the pulses are the minimal pulse width, the maximal pulse width, and the repetition rate. Given the rotation constraints of the servo, neutral is defined to be the center of rotation. Different servos will have different constraints on their rotation, but the neutral position is always around 1.5 milliseconds (ms) pulse width.

Pulse duration

In modern RC servos the angle of mechanical rotation is determined by the width of an electrical pulse that is applied to the control wire. This is a form of pulse-width modulation. The typical RC servo expects to see a pulse every 20 ms, however this can vary within a wide range that differs from servo to servo. The width of the pulse will determine how far the motor turns. For example, in many RC servos a 1.5 ms pulse will make the motor turn to the 90° position (neutral position). The low time (and the total period) can vary over a wide range, and vary from one pulse to the next, without any effect on the position of the servo motor.

Modern RC servo position is not defined by the PWM duty cycle (i.e., ON vs. OFF time) but only by the width of the pulse. (This is different from the PWM used, for example, in some DC motor speed control). Most RC servos move to the same position when they receive a 1.5 ms pulse every 6 ms (a duty cycle of 25%) as when they receive a 1.5 ms pulse every 25 ms (a duty cycle of 6%) – in both cases, they turn to the central position (neutral position). With many RC servos, as long as the refresh rate (how many times per second the pulse is sent, a.k.a. the pulse repetition rate) is in a range of 40 Hz to 200 Hz, the exact value of the refresh rate is irrelevant. [1] [2] [3] [4] [5] [6] [7] [8] [9]

The period of 20 ms (50 Hz) comes from the days where the signal was encoded in PPM (pulse-position modulation) format to be sent over the air. [10] The PPM period was around 22.5 ms, and the conversion to PWM was trivial: the time of the PWM high state was the time position of the PPM pulse for that servo.

Most RC receivers send pulses to the RC servo at some constant frame rate, changing only the high time. However, it is possible to command an RC servo to move over its entire range with a function generator set to a constant 10% duty cycle by changing only the frequency (frame rate). [11]

Force

When these servos are commanded to move, they will move to the position and hold that position. If an external force pushes against the servo while the servo is holding a position, the servo will resist from moving out of that position. The maximal amount of force the servo can exert is the torque rating of the servo. Servos will only hold their position for their timeout duration, though; the position pulse must be repeated, usually within 20ms, to instruct the servo to stay in position.

Variations

When a pulse is sent to a servo that is less than 1.5 ms, the servo rotates to a position and holds its output shaft some number of degrees counterclockwise from the neutral point. When the pulse is wider than 1.5 ms the opposite occurs. The minimal and maximal widths of pulse that will command the servo to turn to a valid position are functions of each servo. Different brands, and even different servos of the same brand, will have different maxima and minima. Generally, the minimal pulse will be about 1 ms wide, and the maximal pulse will be 2 ms wide.

See also

Related Research Articles

<span class="mw-page-title-main">Duty cycle</span> Activity fraction of a periodic system

A duty cycle or power cycle is the fraction of one period in which a signal or system is active. Duty cycle is commonly expressed as a percentage or a ratio. A period is the time it takes for a signal to complete an on-and-off cycle. As a formula, a duty cycle (%) may be expressed as:

<span class="mw-page-title-main">Pulse-width modulation</span> Electric signal modulation technique used to reduce power load

Pulse-width modulation (PWM), also known as pulse-duration modulation (PDM) or pulse-length modulation (PLM), is a method of controlling the average power or amplitude delivered by an electrical signal. The average value of voltage fed to the load is controlled by switching the supply between 0 and 100% at a rate faster than it takes the load to change significantly. The longer the switch is on, the higher the total power supplied to the load. Along with maximum power point tracking (MPPT), it is one of the primary methods of controlling the output of solar panels to that which can be utilized by a battery. PWM is particularly suited for running inertial loads such as motors, which are not as easily affected by this discrete switching. The goal of PWM is to control a load; however, the PWM switching frequency must be selected carefully in order to smoothly do so.

<span class="mw-page-title-main">Radio-controlled model</span>

A radio-controlled model is a model that is steerable with the use of radio control (RC). All types of model vehicles have had RC systems installed in them, including ground vehicles, boats, planes, helicopters and even submarines and scale railway locomotives.

Pulse-position modulation (PPM) is a form of signal modulation in which M message bits are encoded by transmitting a single pulse in one of possible required time shifts. This is repeated every T seconds, such that the transmitted bit rate is bits per second. It is primarily useful for optical communications systems, which tend to have little or no multipath interference.

<span class="mw-page-title-main">Power inverter</span> Device that changes direct current (DC) to alternating current (AC)

A power inverter, inverter or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opposite of rectifiers which were originally large electromechanical devices converting AC to DC.

In mechanical engineering and control engineering, a servomechanism is a control system for the position and its time derivatives of a mechanical system using closed-loop control to reduce steady-state error and improved dynamic response. In closed-loop control, error-sensing negative feedback is used to correct the action of the mechanism. In displacement-controlled applications, it usually includes a built-in encoder or other position feedback mechanism to ensure the output is achieving the desired effect. Following a specified motion trajectory is called servoing, where "servo" is used as a verb. The servo prefix originates from the Latin word servus meaning slave.

<span class="mw-page-title-main">Computer fan control</span> Management of the rotational speed of a computer fan

Fan control is the management of the rotational speed of an electric fan. In computers, various types of computer fans are used to provide adequate cooling, and different fan control mechanisms balance their cooling capacities and noise they generate. This is commonly accomplished by the motherboards having hardware monitoring circuitry, which can be configured by the end-user through BIOS or other software to perform fan control.

<span class="mw-page-title-main">Power electronics</span> Technology of power electronics

Power electronics is the application of electronics to the control and conversion of electric power.

<span class="mw-page-title-main">Chopper (electronics)</span> Electromechanical device

In electronics, a chopper circuit is any of numerous types of electronic switching devices and circuits used in power control and signal applications. A chopper is a device that converts fixed DC input to a variable DC output voltage directly. Essentially, a chopper is an electronic switch that is used to interrupt one signal under the control of another.

<span class="mw-page-title-main">Variable-frequency drive</span> Type of adjustable-speed drive

A variable-frequency drive is a type of AC motor drive that controls speed and torque by varying the frequency of the input electricity. Depending on its topology, it controls the associated voltage or current variation.

<span class="mw-page-title-main">Class-D amplifier</span> Audio amplifier based on switching

A class-D amplifier or switching amplifier is an electronic amplifier in which the amplifying devices operate as electronic switches, and not as linear gain devices as in other amplifiers. They operate by rapidly switching back and forth between the supply rails, using pulse-width modulation, pulse-density modulation, or related techniques to produce a pulse train output. This passes through a simple low-pass filter which blocks the high-frequency pulses and provides analog output current and voltage. Because they are always either in fully on or fully off modes, little energy is dissipated in the transistors and efficiency can exceed 90%.

<span class="mw-page-title-main">Korg MS-20</span> Patchable semi-modular monophonic analog synthesizer

The Korg MS-20 is a patchable semi-modular monophonic analog synthesizer which Korg released in 1978 and which was in production until 1983. It was part of Korg's MS series of instruments, which also included the single oscillator MS-10, the keyboardless MS-50 module, the SQ-10 sequencer, and the VC-10 Vocoder. Additional devices included the MS-01 Foot Controller, MS-02 Interface, MS-03 Signal Processor, and MS-04 Modulation Pedal.

Flicker-free is a term given to video displays, primarily cathode ray tubes, operating at a high refresh rate to reduce or eliminate the perception of screen flicker. For televisions, this involves operating at a 100 Hz or 120 Hz hertz field rate to eliminate flicker, compared to standard televisions that operate at 50 Hz or 60 Hz (NTSC), most simply done by displaying each field twice, rather than once. For computer displays, this is usually a refresh rate of 70–90 Hz, sometimes 100 Hz or higher. This should not be confused with motion interpolation, though they may be combined – see implementation, below.

An electronic speed control (ESC) is an electronic circuit that controls and regulates the speed of an electric motor. It may also provide reversing of the motor and dynamic braking. Miniature electronic speed controls are used in electrically powered radio controlled models. Full-size electric vehicles also have systems to control the speed of their drive motors.

<span class="mw-page-title-main">Servo drive</span> Electronic amplifier used to power electric servomechanisms

A servo drive is an electronic amplifier used to power electric servomechanisms.

<span class="mw-page-title-main">Korg MS-10</span> Musical synthesizer

Korg MS-10 is an analogue synthesizer created by Korg in 1978. Unlike its bigger brother, the Korg MS-20, the MS-10 only has one VCO, one VCF and one envelope generator. It is monophonic and has 32 keys.

Pulse-frequency modulation (PFM) is a modulation method for representing an analog signal using only two levels. It is analogous to pulse-width modulation (PWM), in which the magnitude of an analog signal is encoded in the duty cycle of a square wave. Unlike PWM, in which the width of square pulses is varied at a constant frequency, PFM fixes the width of square pulses while varying the frequency. In other words, the frequency of the pulse train is varied in accordance with the instantaneous amplitude of the modulating signal at sampling intervals. The amplitude and width of the pulses are kept constant.

<span class="mw-page-title-main">Servo (radio control)</span> Servomotor or other type of actuator used for radio control and small-scale robotics

Servos are small, cheap, mass-produced servomotors or other actuators used for radio control and small-scale robotics.

Stochastic Signal Density Modulation (SSDM) is a novel power modulation technique primarily used for LED power control. The information is encoded - or the power level is set - using pulses that have pseudo-random widths. The pulses are produced so that, on average, the produced signal will have the desired ratio between high and low states. The main benefit of using SSDM over, for example, Pulse-width modulation (PWM), which is usually the preferred method for controlling LED power, is reduced electromagnetic interference. Figure 1 illustrates a SSDM signal and demonstrates how the average signal density approaches desired value. The pseudo-random pulses in the signal are visible.

<span class="mw-page-title-main">Random pulse-width modulation</span>

Random pulse-width modulation (RPWM) is a modulation technique introduced for mitigating electromagnetic interference (EMI) of power converters by spreading the energy of the noise signal over a wider bandwidth, so that there are no significant peaks of the noise. This is achieved by randomly varying the main parameters of the pulse-width modulation signal.

References

  1. Ron Lund. "Servo Frequency and Center Pulse Width Information" Archived 2013-01-19 at the Wayback Machine .
  2. Bob Blick. "Servo pulse to PWM converter" "The rate at which pulses are sent to the servo is relatively unimportant".
  3. Society of Robots: Servos.
  4. Pololu. "Servo control interface in detail" "servo control signals... the frequency of the pulse train does not affect the servo position if the pulse width stays the same".
  5. ""Introduction to Servomotor Programming"" (PDF). Archived from the original (PDF) on 2017-08-19. Retrieved 2012-10-23.
  6. "Understanding PWM".
  7. "servos".
  8. 4QD-TEC. "Pulse Width Position Servo".
  9. "Servo Control".
  10. serge.laforest.free.fr.
  11. "Driving the Servo Motor".