Shannon D. Blunt | |
---|---|
Alma mater | University of Missouri |
Scientific career | |
Fields | Radar Signal Processing, Radar Systems Engineering |
Institutions | University of Kansas |
Website | https://eecs.ku.edu/shannon-blunt |
Shannon D. Blunt is an American radar engineer and the Roy A. Roberts Distinguished Professor of Electrical Engineering & Computer Science at the University of Kansas (KU) in Lawrence, KS. He is Director of the KU Radar Systems & Remote Sensing Lab (RSL) and the Kansas Applied Research Lab (KARL).
Blunt grew up in New Madrid, Missouri, and was one of five valedictorians in the class of 1994 at New Madrid County Central High School. He then received B.S., M.S., and PhD degrees in electrical engineering from the University of Missouri in 1999, 2000, and 2002. From 2002 to 2005 he worked as a radar engineer in the Radar Division of the U.S. Naval Research Laboratory (NRL) in Washington, DC, joining the University of Kansas in 2005. His research interests are in sensor signal processing and system design with a particular emphasis on waveform diversity and spectrum sharing techniques, having made a variety of contributions that have been deployed in operational radar and sonar systems.
With a focus on the intersection between theoretical signal processing and radar systems engineering, Blunt has led the development of numerous radar research contributions, with many of these being experimentally demonstrated using open-air measurements. Some noteworthy examples, many of which are patented/patent-pending, include:
In 2008 Blunt received a Young Investigator Program (YIP) award from the Air Force Office of Scientific Research (AFOSR) to investigate radar-embedded communications. [26] In 2012 he received the Fred Nathanson Memorial Radar Award from the Aerospace & Electronic Systems Society of the Institute of Electrical and Electronics Engineers (IEEE) for contributions to adaptive radar signal processing and waveform diversity. [27] In 2016 he was named a Fellow of the IEEE for contributions to radar waveform diversity and design. [28] In 2020 he received the IET Premium Award [29] for a 2018 paper [19] published in the IET Radar, Sonar & Navigation journal involving the practical realization of cognitive sense-and-notch radar operation. In 2021 he was short-listed for the IET A.F. Harvey Prize in radar & microwave engineering. [30] In 2024 he was named a Fellow of the Military Sensing Symposia (MSS) for contributions to national defense and civilian applications of radar waveform diversity and design. [31]
Blunt has served the engineering profession in a variety of different capacities. From 2008-2020 he served on the Radar Systems Panel of the IEEE Aerospace & Electronic Systems Society, where he was Chair of the Conferences Committee from 2012-2018 and Panel Chair from 2018-2020. Since 2008 he has been on the Editorial Board for IET Radar, Sonar & Navigation and in 2022 was the Senior Editor for Radar Systems [32] for IEEE Transactions on Aerospace & Electronic Systems. In October 2022, he became the inaugural Editor-in-Chief for the IEEE Transactions on Radar Systems. He served as General Chair of the 2011 IEEE Radar Conferences in Kansas City, MO, and Technical Chair for the 2018, 2022, and 2023 IEEE Radar Conference in Oklahoma City, OK, New York City, NY, and San Antonio, TX.
He chaired the NATO SET-179 research task group (RTG) on Dynamic Waveform Diversity & Design, and participated in the NATO RTGs SET-182 on Radar Spectrum Engineering & Management and SET-227 on Cognitive Radar.
He has also held multiple advisory positions to the U.S. government, including serving as a subject matter expert (SME) on spectrum issues to DARPA, the Air Force Research Laboratory, the Office of the Undersecretary of Defense for Research & Engineering (OUSD(R&E)), and the White House Office of Science & Technology Policy (OSTP). From 2019-2021 he served on the U.S. President's Council of Advisors for Science & Technology (PCAST) and well as being an OSTP SME for America's Mid-Band Initiative (AMBIT) to enable nationwide 5G deployment.
Radar is a system that uses radio waves to determine the distance (ranging), direction, and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.
A multistatic radar system contains multiple spatially diverse monostatic radar or bistatic radar components with a shared area of coverage. An important distinction of systems based on these individual radar geometries is the added requirement for some level of data fusion to take place between component parts. The spatial diversity afforded by multistatic systems allows different aspects of a target to be viewed simultaneously. The potential for information gain can give rise to a number of advantages over conventional systems.
Passive radar is a class of radar systems that detect and track objects by processing reflections from non-cooperative sources of illumination in the environment, such as commercial broadcast and communications signals. It is a specific case of bistatic radar – passive bistatic radar (PBR) – which is a broad type also including the exploitation of cooperative and non-cooperative radar transmitters.
The JY-14 is a medium to long range air defense radar produced and used by the People's Republic of China. It is capable of detecting multiple targets within its range and determine their parameters, tracking them even through surface clutter and ECM jamming. It utilizes a frequency-agile mode with 31 different frequencies, has a large band of ECCM operating parameter frequencies, and uses linear FM compression. This system can simultaneously track up to 100 targets and can feed the data to missile-interceptor batteries. It can track targets flying as high as 75,000 feet (22,900 m) and 186 miles (299 km) in distance.
Waveform shaping in electronics is the modification of the shape of an electronic waveform. It is in close connection with waveform diversity and waveform design, which are extensively studied in signal processing. Shaping the waveforms are of particular interest in active sensing for better detection performance, as well as communication schemes, and biology.
Peter (Petre) Stoica is a researcher and educator in the field of signal processing and its applications to radar/sonar, communications and bio-medicine. He is a professor of Signals and Systems Modeling at Uppsala University in Sweden, and a Member of the Royal Swedish Academy of Engineering Sciences, the United States National Academy of Engineering, the Romanian Academy, the European Academy of Sciences, and the Royal Society of Sciences in Uppsala. He is also a Fellow of IEEE, EURASIP, IETI, and the Royal Statistical Society.
Bio-radiolocation is a technology for remote detection and diagnostics of biological objects by means of radar, even behind optically opaque obstacles. Devices based on this method are called bio-radars.
The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power. Furthermore, the process offers good range resolution because the half-power beam width of the compressed pulse is consistent with the system bandwidth.
IEEE Transactions on Aerospace and Electronic Systems is a bimonthly peer-reviewed scientific journal published by the IEEE Aerospace and Electronic Systems Society. It covers the organization, design, development, integration, and operation of complex systems for space, air, ocean, or ground environment. The editor-in-chief is Gokhan Inalhan. According to the Journal Citation Reports, the journal has a 2020 impact factor of 4.102.
AlfonsoFarinaFREng is an Italian electronic engineer and former industry manager. He is most noted for the development of the track while scan techniques for radars and generally for the development of a wide range of signal processing techniques used for sensors where tracking plays an essential role. He is author of about 1000 publications. His work was aimed to a synergistic cooperation between industry and academy.
Teresa Pace is an electrical engineer at L3Harris. She received her doctorate in EE at The Pennsylvania State University. She specializes in digital image and signal processing for the development of detection, recognition, classification, tracking, and image enhancement algorithms primarily for EO/IR US defense applications. She has worked at PSU ARL, Lockheed Martin Missiles and Fire Control as well as LM Global Training Solutions, DRS a Finnmechanica Company, The US Army’s Night Vision Labs as a subject matter expert and SenTech, LLC, in Orlando, Florida. She was named a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) in 2015 for her contributions to image and signal processing algorithms for sensor systems. Dr Pace received the highest technical award from LM, the Nova Award for her individual contributions in real time video tracking. She has 15 patents and over 80 publications. She is a life member of HKN engineering honor society, past president of IEEE Aerospace and Electronic Systems Society, past Editor in Chief for IEEE AESS magazine, and a member of IEEE Women in Engineering, and was chair of the SPIE society’s Defense, Commercial, and Sensing Conference.
Multiple-input multiple-output (MIMO) radar is an extension of a traditional radar system to utilize multiple-inputs and multiple-outputs (antennas), similar to MIMO techniques used to increase the capacity of a radio link. MIMO radar is an advanced type of phased array radar employing digital receivers and waveform generators distributed across the aperture. MIMO radar signals propagate in a fashion similar to multistatic radar. However, instead of distributing the radar elements throughout the surveillance area, antennas are closely located to obtain better spatial resolution, Doppler resolution, and dynamic range. MIMO radar may also be used to obtain low-probability-of-intercept radar properties.
Electromagnetic radio frequency (RF) convergence is a signal-processing paradigm that is utilized when several RF systems have to share a finite amount of resources among each other. RF convergence indicates the ideal operating point for the entire network of RF systems sharing resources such that the systems can efficiently share resources in a manner that's mutually beneficial. With communications spectral congestion recently becoming an increasingly important issue for the telecommunications sector, researchers have begun studying methods of achieving RF convergence for cooperative spectrum sharing between remote sensing systems and communications systems. Consequentially, RF convergence is commonly referred to as the operating point of a remote sensing and communications network at which spectral resources are jointly shared by all nodes of the network in a mutually beneficial manner. Remote sensing and communications have conflicting requirements and functionality. Furthermore, spectrum sharing approaches between remote sensing and communications have traditionally been to separate or isolate both systems. This results in stove pipe designs that lack back compatibility. Future of hybrid RF systems demand co-existence and cooperation between sensibilities with flexible system design and implementation. Hence, achieving RF convergence can be an incredibly complex and difficult problem to solve. Even for a simple network consisting of one remote sensing and communications system each, there are several independent factors in the time, space, and frequency domains that have to be taken into consideration in order to determine the optimal method to share spectral resources. For a given spectrum-space-time resource manifold, a practical network will incorporate numerous remote sensing modalities and communications systems, making the problem of achieving RF convergence intangible.
Moeness G. Amin is an Egyptian-American professor and engineer. Amin is the director of the Center for Advanced Communications and a professor in the Department of Electrical and Computer Engineering at Villanova University.
Fauzia Ahmad is an associate professor of electrical engineering at Temple University. Her research considers statistical signal processing and ultrasonic guided wave structural health monitoring. She serves as associate editor of the IEEE Transactions on Aerospace and Electronic Systems and Geoscience and Remote Sensing Society. She is a Fellow of the Institute of Electrical and Electronics Engineers and SPIE.
Daniel W. Bliss is an American professor, engineer, and physicist. He is a Fellow of the IEEE and was awarded the IEEE Warren D. White award for outstanding technical advances in the art of radar engineering in 2021 for his contributions to MIMO radar, Multiple-Function Sensing and Communications Systems, and Novel Small-Scale Radar Applications. He is a professor in the School of Electrical, Computer and Energy Engineering at Arizona State University. He is also the director of the Center for Wireless Information Systems and Computational Architecture (WISCA).
Athina Petropulu is a Greek electrical engineer, researcher and academic. She is Distinguished Professor in the Electrical and Computer Engineering (ECE) Department at Rutgers, The State University of New Jersey. She has made contributions in signal processing, wireless communications and networks, and radar systems. She received many awards for her work in these areas.
Joseph Tabrikian is an Israeli professor in the School of Electrical and Computer Engineering at Ben-Gurion University of the Negev. He is the founder and former head of the School. He is a fellow of IEEE “For contributions to estimation theory and Multiple-Input Multiple-Output radars.”
Maria Sabrina Greco is an Italian electrical engineer focused on signal processing for radar detection, radar clutter modeling, and cognitive radar. She is a professor in the Department of Information Engineering at the University of Pisa, and president of the IEEE Aerospace and Electronic Systems Society.