Shannon Blunt

Last updated
Shannon D. Blunt
Blunt Shannon 12244 OPT 1500px.jpg
Alma mater University of Missouri
Scientific career
FieldsRadar Signal Processing, Radar Systems Engineering
Institutions University of Kansas
Website https://eecs.ku.edu/shannon-blunt

Shannon D. Blunt is an American radar engineer and the Roy A. Roberts Distinguished Professor of Electrical Engineering & Computer Science at the University of Kansas (KU) in Lawrence, KS. He is Director of the KU Radar Systems & Remote Sensing Lab (RSL) and the Kansas Applied Research Lab (KARL).

Contents

Education and career

Blunt grew up in New Madrid, Missouri, and was one of five valedictorians in the class of 1994 at New Madrid County Central High School. He then received B.S., M.S., and PhD degrees in electrical engineering from the University of Missouri in 1999, 2000, and 2002. From 2002 to 2005 he worked as a radar engineer in the Radar Division of the U.S. Naval Research Laboratory (NRL) in Washington, DC, joining the University of Kansas in 2005. His research interests are in sensor signal processing and system design with a particular emphasis on waveform diversity and spectrum sharing techniques, having made a variety of contributions that have been deployed in operational radar and sonar systems.

Research contributions

With a focus on the intersection between theoretical signal processing and radar systems engineering, Blunt has led the development of numerous radar research contributions, with many of these being experimentally demonstrated using open-air measurements. Some noteworthy examples, many of which are patented/patent-pending, include:

Awards and honors

In 2008 Blunt received a Young Investigator Program (YIP) award from the Air Force Office of Scientific Research (AFOSR) to investigate radar-embedded communications. [26] In 2012 he received the Fred Nathanson Memorial Radar Award from the Aerospace & Electronic Systems Society of the Institute of Electrical and Electronics Engineers (IEEE) for contributions to adaptive radar signal processing and waveform diversity. [27] In 2016 he was named a Fellow of the IEEE for contributions to radar waveform diversity and design. [28] In 2020 he received the IET Premium Award [29] for a 2018 paper [19] published in the IET Radar, Sonar & Navigation journal involving the practical realization of cognitive sense-and-notch radar operation. In 2021 he was short-listed for the IET A.F. Harvey Prize in radar & microwave engineering. [30]

Professional service

Blunt has served the engineering profession in a variety of different capacities. From 2008-2020 he served on the Radar Systems Panel of the IEEE Aerospace & Electronic Systems Society, where he was Chair of the Conferences Committee from 2012-2018 and Panel Chair from 2018-2020. Since 2008 he has been on the Editorial Board for IET Radar, Sonar & Navigation and in 2022 was the Senior Editor for Radar Systems [31] for IEEE Transactions on Aerospace & Electronic Systems. In October 2022, he became the inaugural Editor-in-Chief for the IEEE Transactions on Radar Systems. He served as General Chair of the 2011 IEEE Radar Conferences in Kansas City, MO, and Technical Chair for the 2018, 2022, and 2023 IEEE Radar Conference in Oklahoma City, OK, New York City, NY, and San Antonio, TX.

He chaired the NATO SET-179 research task group (RTG) on Dynamic Waveform Diversity & Design, and participated in the NATO RTGs SET-182 on Radar Spectrum Engineering & Management and SET-227 on Cognitive Radar.

He has also held multiple advisory positions to the U.S. government, including serving as a subject matter expert (SME) on spectrum issues to DARPA, the Air Force Research Laboratory, the Office of the Undersecretary of Defense for Research & Engineering (OUSD(R&E)), and the White House Office of Science & Technology Policy (OSTP). From 2019-2021 he served on the U.S. President's Council of Advisors for Science & Technology (PCAST) and well as being an OSTP SME for America's Mid-Band Initiative (AMBIT) to enable nationwide 5G deployment.

Related Research Articles

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a system that uses radio waves to determine the distance (ranging), direction, and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.

<span class="mw-page-title-main">Multistatic radar</span>

A multistatic radar system contains multiple spatially diverse monostatic radar or bistatic radar components with a shared area of coverage. An important distinction of systems based on these individual radar geometries is the added requirement for some level of data fusion to take place between component parts. The spatial diversity afforded by multistatic systems allows different aspects of a target to be viewed simultaneously. The potential for information gain can give rise to a number of advantages over conventional systems.

Passive radar is a class of radar systems that detect and track objects by processing reflections from non-cooperative sources of illumination in the environment, such as commercial broadcast and communications signals. It is a specific case of bistatic radarpassive bistatic radar (PBR) – which is a broad type also including the exploitation of cooperative and non-cooperative radar transmitters.

<span class="mw-page-title-main">William L. Melvin</span>

William L. "Bill" Melvin is the deputy director of Sensors and Intelligent Systems at the Georgia Tech Research Institute. He is a former director of the GTRI Sensors and Electromagnetic Applications Laboratory (SEAL).

Waveform shaping in electronics is the modification of the shape of an electronic waveform. It is in close connection with waveform diversity and waveform design, which are extensively studied in signal processing. Shaping the waveforms are of particular interest in active sensing for better detection performance, as well as communication schemes, and biology.

<span class="mw-page-title-main">Peter Stoica</span> Swedish academic

Peter (Petre) Stoica is a researcher and educator in the field of signal processing and its applications to radar/sonar, communications and bio-medicine. He is a professor of Signals and Systems Modeling at Uppsala University in Sweden, and a Member of the Royal Swedish Academy of Engineering Sciences, the United States National Academy of Engineering (International Member), the Romanian Academy, the European Academy of Sciences, and the Royal Society of Sciences. He is also a Fellow of IEEE, EURASIP, IETI, and the Royal Statistical Society.

<span class="mw-page-title-main">Chai Keong Toh</span> Singaporean computer scientist

Chai Keong Toh is a Singaporean computer scientist, engineer, industry director, former VP/CTO and university professor. He is currently a Senior Fellow at the University of California Berkeley, USA. He was formerly Assistant Chief Executive of Infocomm Development Authority (IDA) Singapore. He has performed research on wireless ad hoc networks, mobile computing, Internet Protocols, and multimedia for over two decades. Toh's current research is focused on Internet-of-Things (IoT), architectures, platforms, and applications behind the development of smart cities.

Bio-radiolocation is a technology for remote detection and diagnostics of biological objects by means of radar, even behind optically opaque obstacles. Devices based on this method are called bio-radars.

The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power. Furthermore, the process offers good range resolution because the half-power beam width of the compressed pulse is consistent with the system bandwidth.

IEEE Transactions on Aerospace and Electronic Systems is a bimonthly peer-reviewed scientific journal published by the IEEE Aerospace and Electronic Systems Society. It covers the organization, design, development, integration, and operation of complex systems for space, air, ocean, or ground environment. The editor-in-chief is Gokhan Inalhan. According to the Journal Citation Reports, the journal has a 2020 impact factor of 4.102.

<span class="mw-page-title-main">Alfonso Farina</span> Italian electronic engineer

AlfonsoFarinaFREng is an Italian electronic engineer and former industry manager. He is most noted for the development of the track while scan techniques for radars and generally for the development of a wide range of signal processing techniques used for sensors where tracking plays an essential role. He is author of about 1000 publications. His work was aimed to a synergistic cooperation between industry and academy.

<span class="mw-page-title-main">MIMO radar</span>

Multiple-input multiple-output (MIMO) radar is an extension of a traditional radar system to utilize multiple-inputs and multiple-outputs (antennas), similar to MIMO techniques used to increase the capacity of a radio link. MIMO radar is an advanced type of phased array radar employing digital receivers and waveform generators distributed across the aperture. MIMO radar signals propagate in a fashion similar to multistatic radar. However, instead of distributing the radar elements throughout the surveillance area, antennas are closely located to obtain better spatial resolution, Doppler resolution, and dynamic range. MIMO radar may also be used to obtain low-probability-of-intercept radar properties.

<span class="mw-page-title-main">Electromagnetic radio frequency convergence</span>

Electromagnetic radio frequency (RF) convergence is a signal-processing paradigm that is utilized when several RF systems have to share a finite amount of resources among each other. RF convergence indicates the ideal operating point for the entire network of RF systems sharing resources such that the systems can efficiently share resources in a manner that's mutually beneficial. With communications spectral congestion recently becoming an increasingly important issue for the telecommunications sector, researchers have begun studying methods of achieving RF convergence for cooperative spectrum sharing between remote sensing systems and communications systems. Consequentially, RF convergence is commonly referred to as the operating point of a remote sensing and communications network at which spectral resources are jointly shared by all nodes of the network in a mutually beneficial manner. Remote sensing and communications have conflicting requirements and functionality. Furthermore, spectrum sharing approaches between remote sensing and communications have traditionally been to separate or isolate both systems. This results in stove pipe designs that lack back compatibility. Future of hybrid RF systems demand co-existence and cooperation between sensibilities with flexible system design and implementation. Hence, achieving RF convergence can be an incredibly complex and difficult problem to solve. Even for a simple network consisting of one remote sensing and communications system each, there are several independent factors in the time, space, and frequency domains that have to be taken into consideration in order to determine the optimal method to share spectral resources. For a given spectrum-space-time resource manifold, a practical network will incorporate numerous remote sensing modalities and communications systems, making the problem of achieving RF convergence intangible.

<span class="mw-page-title-main">Moeness Amin</span> Egyptian-American professor and engineer

Moeness G. Amin is an Egyptian-American professor and engineer. Amin is the director of the Center for Advanced Communications and a professor in the Department of Electrical and Computer Engineering at Villanova University.

Fauzia Ahmad is an associate professor of electrical engineering at Temple University. Her research considers statistical signal processing and ultrasonic guided wave structural health monitoring. She serves as associate editor of the IEEE Transactions on Aerospace and Electronic Systems and Geoscience and Remote Sensing Society. She is a Fellow of the Institute of Electrical and Electronics Engineers and SPIE.

<span class="mw-page-title-main">Ajit Kumar Chaturvedi</span> Indian electrical engineering professor

Ajit Kumar Chaturvedi is an Indian professor, education administrator and former director of IIT Roorkee. Previously, he has been the Dean (R&D), and former Deputy Director at IIT Kanpur. He has largely contributed to waveform shaping and sequence design, MIMO systems. Recently, he has been bestowed with additional charge of director (acting) of newly established IIT Mandi and served the office till January 2022.Thereafter, he was succeeded by Professor Laxmidhar Behera.

<span class="mw-page-title-main">Daniel W. Bliss</span> American physicist

Daniel W. Bliss is an American professor, engineer, and physicist. He is a Fellow of the IEEE and was awarded the IEEE Warren D. White award for outstanding technical advances in the art of radar engineering in 2021 for his contributions to MIMO radar, Multiple-Function Sensing and Communications Systems, and Novel Small-Scale Radar Applications. He is a professor in the School of Electrical, Computer and Energy Engineering at Arizona State University. He is also the director of the Center for Wireless Information Systems and Computational Architecture (WISCA).

Joseph Tabrikian is an Israeli professor in the School of Electrical and Computer Engineering at Ben-Gurion University of the Negev. He is the founder and former head of the School. He is a fellow of IEEE “For contributions to estimation theory and Multiple-Input Multiple-Output radars.”

References

  1. S.D. Blunt and K. Gerlach, "Adaptive pulse compression via MMSE estimation," IEEE Transactions on Aerospace & Electronic Systems, vol. 42, no. 2, pp. 572-584, April 2006.
  2. S.D. Blunt and K. Gerlach, "Robust predictive deconvolution system and method," US Patent #6,940,450, issued September 6, 2005.
  3. D. Henke, P. McCormick, S.D. Blunt, and T. Higgins, "Practical aspects of optimal mismatch filtering and adaptive pulse compression for FM waveforms," IEEE International Radar Conference, Washington, DC, May 2015.
  4. S.D. Blunt and K. Gerlach, "Multistatic adaptive pulse compression method and system," US Patent #7,474,257, issued January 6, 2009.
  5. P.M. McCormick and S.D. Blunt, "Shared-spectrum multistatic radar: experimental demonstration using FM waveforms," IEEE Radar Conference, Oklahoma City, OK, Apr. 2018.
  6. C.C. Jones, L.A. Harnett, C.A. Mohr, S.D. Blunt, and C.T. Allen, “Structure-based adaptive radar processing for joint clutter cancellation and moving target estimation,” IEEE International Radar Conference, Washington, DC, Apr. 2020.
  7. C.C. Jones, L. Harnett, C.A. Mohr, and S.D. Blunt, “Structure-based adaptive radar processing for joint interference cancellation and signal estimation,” U.S. Patent Application #63/154,574, filed on Feb. 26, 2021.
  8. M. Popescu, S.D. Blunt, and T. Chan, "Magnetoencephalography source localization using the source affine image reconstruction (SAFFIRE) algorithm," IEEE Transactions on Biomedical Engineering, vol. 57, no. 7, pp. 1652-1662, July 2010.
  9. S.D. Blunt, M. Popescu, and T. Chan, "Source affine reconstruction for medical imaging," US Patent #8,433,388, issued April 30, 2013.
  10. S.D. Blunt, M. Cook, J. Jakabosky, J. de Graaf, and E. Perrins, "Polyphase-coded FM (PCFM) radar waveforms, part I: implementation," IEEE Transactions on Aerospace & Electronic Systems, vol. 50, no. 3, pp. 2218-2229, July 2014.
  11. S.D. Blunt, J. Jakabosky, M. Cook, J. Stiles, S. Seguin, and E.L. Mokole, "Polyphase-coded FM (PCFM) radar waveforms, part II: optimization," IEEE Transactions on Aerospace & Electronic Systems, vol. 50, no. 3, pp. 2230-2241, July 2014.
  12. S.D. Blunt, J.K. Jakabosky, C.A. Mohr, P.M. McCormick, J.W. Owen, B. Ravenscroft, C. Sahin, G.D. Zook, C.C. Jones, J.G. Metcalf, and T. Higgins, "Principles & applications of random FM radar waveform design," IEEE Aerospace & Electronic Systems Magazine, vol. 35, no. 10, pp. 20-28, Oct. 2020.
  13. P.M. McCormick, A. Duly, B. Ravenscroft, S.D. Blunt, and J. Metcalf, "Simultaneous radar and communication emissions from a common aperture, part II: experimentation," IEEE Radar Conference, Seattle, WA, May 2017.
  14. P.M. McCormick, C. Sahin, S.D. Blunt, and J.G. Metcalf “Physical waveform optimization for multiple-beam multifunction digital arrays,” U.S. Patent Application #62/928,307, filed on Oct. 30, 2019.
  15. B. Ravenscroft, P.M. McCormick, S. Blunt, E.S. Perrins, C. Sahin, and J.G. Metcalf, “Experimental assessment of tandem-hopped radar and communications (THoRaCs),” SEE International Radar Conference, Toulon, France, Sept. 2019.
  16. G.B. Ravenscroft, P.M. McCormick, S.D. Blunt, E.S. Perrins, and J.G. Metcalf, "Power-efficient formulation of tandem-hopped radar & communications," U.S. Patent Application #62/737,074, filed on Sept. 26, 2018.
  17. P.M. McCormick, C. Sahin, J.G. Metcalf, and S.D. Blunt, "FMCW implementation of phase-attached radar/communications," IEEE Radar Conference, Boston, MA, Apr. 2019.
  18. C. Sahin, J.G. Metcalf, J. Jakabosky, P.M. McCormick, S.D. Blunt, and E.S. Perrins, “A continuous-phase modulation based power-efficient tunable joint radar/communications system,” US Patent Application #62/903,615, filed on Sept. 20, 2019.
  19. 1 2 B. Ravenscroft, J.W. Owen, J. Jakabosky, S.D. Blunt, A.F. Martone, and K.D. Sherbondy, "Experimental demonstration and analysis of cognitive spectrum sensing & notching," IET Radar, Sonar & Navigation, vol. 12, no. 12, pp. 1466-1475, Dec. 2018.
  20. C.C. Jones, C.A. Mohr, P.M. McCormick, and S.D. Blunt, "Complementary frequency modulated radar waveforms and optimised receive processing," IET Radar, Sonar & Navigation, Apr. 2021.
  21. S.D. Blunt, M.R. Cook, and J. Stiles, “Embedding information into radar emissions via waveform implementation,” International Waveform Diversity & Design Conference, Niagara Falls, Canada, Aug. 2010.
  22. J.W. Owen, G.B. Ravenscroft, and S.D. Blunt, "Devoid clutter capture and filling (DeCCaF) to compensate for intra-CPI spectral notch variation," US Patent Application #62/903,618, filed on Sept. 20, 2019.
  23. C. Jones, B. Ravenscroft, J. Vogel, S.M. Shontz, T. Higgins, K. Wagner, and S. Blunt, “Computationally efficient joint-domain clutter cancellation for waveform-agile radar,” IEEE Radar Conference, Atlanta, GA, May 2021.
  24. M. Wicks, E. Mokole, S.D. Blunt, V. Amuso, and R. Schneible, eds., Principles of Waveform Diversity and Design, SciTech Publishing, 2010.
  25. S.D. Blunt and E.S. Perrins, eds., Radar & Communication Spectrum Sharing, SciTech Publishing, 2018.
  26. "Air Force launches Young Investigators Research Program with $9.5 million investment". www.wpafb.af.mil. Retrieved 2021-06-14.
  27. "Fred Nathanson Memorial Radar Award | Aerospace & Electronic Systems Society". ieee-aess.org. Retrieved 2021-06-13.
  28. "AESS IEEE Aerospace & Electronic Systems Society". ieee-aess.org. Retrieved 2021-06-14.
  29. "IET Premium Awards - 2020". Institution of Engineering and Technology. Retrieved 2021-06-12.
  30. "A F Harvey Prize - The IET". www.theiet.org. Retrieved 2021-11-05.
  31. "Technical Areas and Editors for IEEE Transactions on Aerospace and Electronic Systems". Institute of Electrical and Electronics Engineers. Retrieved 2022-02-17.