Transcriptional regulator ovo | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Organism | |||||||
Symbol | ovo | ||||||
UniProt | P51521 | ||||||
|
The shavenbaby (svb) or ovo gene encodes a transcription factor in Drosophila responsible for inducing cells to become hair-like projections called trichomes or microtrichia. [1] [2] Many of the major developmental signaling pathways converge at the shavenbaby locus, which then regulates over 150 downstream target genes. [3] The "hourglass" shape of this gene regulatory network makes shavenbaby the master regulator of trichome formation. [4] [2] The unique setup of the gene regulatory network made trichomes an excellent readout to identify important developmental genes during the forward genetics Heidelberg Screen. [5] Additionally, shavenbaby is considered to be an "evolutionary hotspot", [6] and experiments have shown that changes in this gene cause the loss of dorsal cuticular hairs in Drosophila sechellia larvae. [2]
Trichomes likely serve a variety of purposes. In larvae, trichomes likely help with larval locomotion. By alternating between bands of trichomes and naked cuticle, larvae can tread across different surfaces. Additionally, trichomes may contribute to hydrophobicity and even stabilize adult flight. [7]
The shavenbaby locus is regulated by multiple signaling pathways, including the HOX factors, Wingless, EGF-R, Hedgehog, and Notch signaling. [1] [8] Additionally, the transcription factors SoxNeuro, Pointed, and Dichaete regulate shavenbaby expression. [9]
During stage 12 of embryonic development, Engrailed is expressed in a subset of cells, which activates the hedgehog signaling pathway. The Hedgehog signal is received by cells expressing Patched, which induces expression of rhomboid (rho) with Serrate-Notch signaling, which activates the EGFR signaling pathway. The drosophila EGF receptor (DER) is responsible for activating shavenbaby both directly and by driving expression of the factors SoxNeuro and Dichaete. [8] [9] [1] [10] Other transcription factors such as Ultrabithorax and its cofactor Homothorax also interact with the different shavenbaby enhancers to activate expression. [11] [12]
During stage 12, the Hedgehog signaling pathway induces expression of the Wingless signal. The Wingless signaling pathway is responsible for repressing shavenbaby activity, and cells expressing Wingless have naked cuticle. Furthermore, mutations to the Wingless gene produce a lawn of trichomes in the naked region. Wingless signaling has been characterized to specifically integrate at the shavenbabyE3 enhancer, which also produces a lawn of expression in Wingless mutants. [10] [12] Wingless signaling is repressed by both SoxNeuro and Dichaete, products of the EGFR signaling pathway. [9]
Developmental enhancers are DNA sequences which control the spatial-temporal patterning of genes during development to set up the bodyplan of an organism. [13] Developmental enhancers are thought to be the main drivers of phenotypic evolution. [6] [9] There are currently seven putative developmental enhancers in the shavenbaby locus: DG2, DG3, Z1.3, A, E3, E6, and 7H. [14] [15] All of these enhancers are pleiotropic, expressing shavenbaby across different developmental stages. [15] The enhancers are somewhat modular, where different patterning components are partitioned to different enhancers. However, many of the expression patterns overlap with each other making the enhancers seemingly redundant. [7]
Enhancer redundancy is a commonly observed phenomenon. [16] Why would evolution evolve redundant enhancers? The mystery of enhancer redundancy was partially resolved by studying the shavenbaby locus in 2010. [17] Frankel et al. found that the redundant enhancers help maintain proper shavenbaby expression under different temperature stresses, [17] canalizing its expression. This finding was also observed eight years later for redundant mammalian enhancers, [18] suggesting that this observation is not limited to Drosophila. Redundant enhancers have also been observed to use different transcription factors, incorporating a diverse set of signaling inputs to canalize gene expression under different environmental stresses. [19]
The E3 enhancer is a 1,042 base-pair (bp) enhancer which drives shavenbaby on the ventral side of stages 15 and 16+ embryos and larvae. E3 is also expressed pleiotropically in the pharynx and esophagus or third-instar larvae. In adult Drosophila, E3 is expressed in the abdomen, head, legs, and wing. [7] The E3 fragment has been tested as smaller fragments such as E3-14 [20] and E3N. [12] [11] Unlike the other shavenbaby enhancers, E3 activity is maintained in Drosophila sechellia. [15] [12]
E3N was first described in Crocker et al., 2015, [11] and was found to encode "homotypic clusters" of binding sites for the transcription factor: Ultrabithorax (Ubx). These binding sites, however, were non-canonical, and Ubx binds to E3N at a very low-affinity. [11] Mutations to increase the affinity of these binding sites caused the ectopic binding of other Homeobox (HOX) factors, resulting in ectopic enhancer expression. HOX factors license the identity of cells, locking them into a fate to produce a particular structure such as wings, halteres, antennae, abdomen, etc. [21] All of the HOX factors are evolutionarily related, and bind to the same homeodomain sequence: TAAT. How enhancers encode the specific binding of certain HOX factors and prevent the ectopic binding of others is called the "Hox Paradox". The E3N study from Crocker et al., 2015 provided an answer to the "Hox Paradox", [22] by suggesting that low-affinity binding sites would provide the specificity, and encoding clusters of the sites would account for the potential weak activation. [11] Low-affinity transcription factor binding sites have also been observed in other enhancers. [23]
In a follow-up study, Fuqua et al. created a library of random mutants to the E3N enhancer to study the enhancer grammar and how enhancers can evolve. [24] [25] The study revealed that even single point mutations had a significant effect on the enhancer expression pattern. Furthermore, the mutations affected multiple components of the pattern. This pleiotropic nature of the mutations was demonstrated when the emergence of novel salivary gland or mouth hook expression was linked with the nearly complete loss of the original embryonic expression pattern. Additionally, changes to the low-affinity Ultrabithorax binding sites resulted in pleiotropic effects modulating the timing, pattern intensity, and ectopic expression. The authors concluded that enhancers are densely encoded with regulatory information and enhancer mutations are usually pleiotropic. Other recent studies in the yellow spot enhancer [26] and the Sonic Hedgehog ZRS enhancer [27] also support this claim. These findings may even suggest that the underlying cis-regulatory logic of an enhancer may constrain its evolution, [12] a claim also made my Preger Ben-Noon et al. [15]
The E6 enhancer is expressed in the dorsal and quaternary cells of Drosophila embryos, larvae, and in the pupal epidermis. [28] The E6 enhancer is one of the five enhancers that contributed to the loss of the larval dorsal trichomes in Drosophila sechellia. [15] The molecular mechanism for this loss of expression was resolved by Preger Ben-Noon et al., [28] where sechellia-E6 consecutively accumulated mutations in activator sites for Arrowhead and Pannier and gained a binding site for the repressor Abrupt. These mutations contributed to a 46% decrease in total embryonic shavenbaby expression, and affected the pleiotropic expression in the pupal epidermis. [15]
The Z1.3 enhancer is a minimalized fragment of the Z enhancer, and drives expression in the embryonic quaternary cells, the larval pharynx and proventriculus, and the pupal epidermis. The Z1.3 enhancer contributed to an estimated 28% loss of total embryonic expression in Drosophila sechellia. However, unlike in E6, the mutations that affected the embryonic pattern of Z1.3 had no effect on its pleiotropic pupal epidermis expression. Preger Ben-Noon et al. further dissected the Z1.3 enhancer and were able to minimalize the pleiotropic activity into two separate enhancers: Z0.3 and Z1.3R. [15]
The DG3 enhancer is primarily expressed in the ventral embryonic epidermis along with E3N and 7H. In larvae, DG3 is expressed in the dorsal and ventral regions, in the pharynix, esophagus, and proventriculus, and in the pupal epidermis. [15] A closer look at the ventral nuclei reveals that the shavenbaby gene physically colocalizes with higher concentrations of the Ultrabithorax protein and its cofactor Homothorax. [29] Additionally, the Drosophila line Df(svb)108 contains a deletion in the DG2, DG3, and Z enhancers. Heat shocking these lines does induce a slight decrease in the number of ventral trichomes. A closer look at the nuclei of these individual cells reveals both lower quanitifiable levels of the shavenbaby transcript and weaker nuclear microenvironment interactions between the ventral enhancers . Interestingly, transcript levels and the microenvironment can be stabilized by crossing flies carrying the deletion with flies carrying an artificial BAC of the shavenbaby locus. [30] The studies from Tsai et al. reveals microenvironments and potentially transvection to be potential mechanisms for how redundant enhancers canalize gene expression. [29] [30]
The 7H enhancer drives expression in both the ventral and dorsal embryonic and larval epidermis, the larval pharynx, and the pupal epidermis. Deletion of the 7H enhancer results in a 38% decrease in total embryonic shavenbaby expression. [15] 7H, DG3, and E3N are the primary ventral enhancers in the embryo. [2]
Shavenbaby activates over 150 different downstream targets to express actin-remodeling proteins to form the denticle. [3] Some of these factors include forked, shavenoid, singed, wasp, yellow, and miniature. [8] Activation of these target genes is also dependent on SoxNeuro, one of the regulators of shavenbaby. Together, SoxNeuro and Shavenbaby act cooperatively to shape the denticles. [10]
A homeobox is a DNA sequence, around 180 base pairs long, that regulates large-scale anatomical features in the early stages of embryonic development. Mutations in a homeobox may change large-scale anatomical features of the full-grown organism.
Cellular differentiation is the process in which a stem cell changes from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular organism as it changes from a simple zygote to a complex system of tissues and cell types. Differentiation continues in adulthood as adult stem cells divide and create fully differentiated daughter cells during tissue repair and during normal cell turnover. Some differentiation occurs in response to antigen exposure. Differentiation dramatically changes a cell's size, shape, membrane potential, metabolic activity, and responsiveness to signals. These changes are largely due to highly controlled modifications in gene expression and are the study of epigenetics. With a few exceptions, cellular differentiation almost never involves a change in the DNA sequence itself. Metabolic composition, however, gets dramatically altered where stem cells are characterized by abundant metabolites with highly unsaturated structures whose levels decrease upon differentiation. Thus, different cells can have very different physical characteristics despite having the same genome.
In genetics, an enhancer is a short region of DNA that can be bound by proteins (activators) to increase the likelihood that transcription of a particular gene will occur. These proteins are usually referred to as transcription factors. Enhancers are cis-acting. They can be located up to 1 Mbp away from the gene, upstream or downstream from the start site. There are hundreds of thousands of enhancers in the human genome. They are found in both prokaryotes and eukaryotes. Active enhancers typically get transcribed as enhancer or regulatory non-coding RNA, whose expression levels correlate with mRNA levels of target genes.
In evolutionary developmental biology, homeosis is the transformation of one organ into another, arising from mutation in or misexpression of certain developmentally critical genes, specifically homeotic genes. In animals, these developmental genes specifically control the development of organs on their anteroposterior axis. In plants, however, the developmental genes affected by homeosis may control anything from the development of a stamen or petals to the development of chlorophyll. Homeosis may be caused by mutations in Hox genes, found in animals, or others such as the MADS-box family in plants. Homeosis is a characteristic that has helped insects become as successful and diverse as they are.
A morphogen is a substance whose non-uniform distribution governs the pattern of tissue development in the process of morphogenesis or pattern formation, one of the core processes of developmental biology, establishing positions of the various specialized cell types within a tissue. More specifically, a morphogen is a signaling molecule that acts directly on cells to produce specific cellular responses depending on its local concentration.
Hox genes, a subset of homeobox genes, are a group of related genes that specify regions of the body plan of an embryo along the head-tail axis of animals. Hox proteins encode and specify the characteristics of 'position', ensuring that the correct structures form in the correct places of the body. For example, Hox genes in insects specify which appendages form on a segment, and Hox genes in vertebrates specify the types and shape of vertebrae that will form. In segmented animals, Hox proteins thus confer segmental or positional identity, but do not form the actual segments themselves.
Cis-regulatory elements (CREs) or cis-regulatory modules (CRMs) are regions of non-coding DNA which regulate the transcription of neighboring genes. CREs are vital components of genetic regulatory networks, which in turn control morphogenesis, the development of anatomy, and other aspects of embryonic development, studied in evolutionary developmental biology.
The Hedgehog signaling pathway is a signaling pathway that transmits information to embryonic cells required for proper cell differentiation. Different parts of the embryo have different concentrations of hedgehog signaling proteins. The pathway also has roles in the adult. Diseases associated with the malfunction of this pathway include cancer.
Ultrabithorax (Ubx) is a homeobox gene found in insects, and is used in the regulation of patterning in morphogenesis. There are many possible products of this gene, which function as transcription factors. Ubx is used in the specification of serially homologous structures, and is used at many levels of developmental hierarchies. In Drosophila melanogaster it is expressed in the third thoracic (T3) and first abdominal (A1) segments and represses wing formation. The Ubx gene regulates the decisions regarding the number of wings and legs the adult flies will have. The developmental role of the Ubx gene is determined by the splicing of its product, which takes place after translation of the gene. The specific splice factors of a particular cell allow the specific regulation of the developmental fate of that cell, by making different splice variants of transcription factors. In D. melanogaster, at least six different isoforms of Ubx exist.
Limb development in vertebrates is an area of active research in both developmental and evolutionary biology, with much of the latter work focused on the transition from fin to limb.
In the field of molecular biology, myocyte enhancer factor-2 (Mef2) proteins are a family of transcription factors which through control of gene expression are important regulators of cellular differentiation and consequently play a critical role in embryonic development. In adult organisms, Mef2 proteins mediate the stress response in some tissues. Mef2 proteins contain both MADS-box and Mef2 DNA-binding domains.
Pre-B-cell leukemia transcription factor 1 is a protein that in humans is encoded by the PBX1 gene. The homologous protein in Drosophila is known as extradenticle, and causes changes in embryonic development.
SRY -box 2, also known as SOX2, is a transcription factor that is essential for maintaining self-renewal, or pluripotency, of undifferentiated embryonic stem cells. Sox2 has a critical role in maintenance of embryonic and neural stem cells.
The Cdx gene family, also called caudal genes, are a group of genes found in many animal genomes. Cdx genes contain a homeobox DNA sequence and code for proteins that act as transcription factors. The gene after which the gene family is named is the caudal or cad gene of the fruitfly Drosophila melanogaster. The human genome has three Cdx genes, called CDX1, CDX2 and CDX4. The zebrafish has no cdx2 gene, but two copies of cdx1 and one copy of cdx4. The Cdx gene in the nematode Caenorhabditis elegans is called pal-1.
Gooseberry (gsb) is a segment polarity gene located on chromosome 2 of the Drosophila genome. Gooseberry is known for its interactions with key embryonic signaling pathways Wingless and Hedgehog. The gene also has clinical significance, being linked to diseases such as Waardenburg Syndrome and rhabdomyosarcoma.
H3K4me3 is an epigenetic modification to the DNA packaging protein Histone H3 that indicates tri-methylation at the 4th lysine residue of the histone H3 protein and is often involved in the regulation of gene expression. The name denotes the addition of three methyl groups (trimethylation) to the lysine 4 on the histone H3 protein.
Evx1 is a mammalian gene located downstream of the HoxA cluster, which encodes for a homeobox transcription factor. Evx1 is a homolog of even-skipped (eve), which is a pair-rule gene that regulates body segmentation in Drosophila. The expression of Evx1 is developmentally regulated, displaying a biphasic expression pattern with peak expression in the primitive streak during gastrulation and in interneurons during neural development. Evx1 has been shown to regulate anterior-posterior patterning during gastrulation by acting as a downstream effector of the Wnt and BMP signalling pathways. It is also a critical regulator of interneuron identity.
The evo-devo gene toolkit is the small subset of genes in an organism's genome whose products control the organism's embryonic development. Toolkit genes are central to the synthesis of molecular genetics, palaeontology, evolution and developmental biology in the science of evolutionary developmental biology (evo-devo). Many of them are ancient and highly conserved among animal phyla.
Vrille (vri) is a bZIP transcription factor found on chromosome 2 in Drosophila melanogaster. Vrille mRNA and protein product (VRI) oscillate predictably on a 24-hour timescale and interact with other circadian clock genes to regulate circadian rhythms in Drosophila. It is also a regulator in embryogenesis; it is expressed in multiple cell types during multiple stages in development, coordinating embryonic dorsal/ventral polarity, wing-vein differentiation, and ensuring tracheal integrity. It is also active in the embryonic gut but the precise function there is unknown. Mutations in vri alter circadian period and cause circadian arrhythmicity and developmental defects in Drosophila.
Eileen E. M. Furlong is an Irish molecular biologist working in the fields of transcription, chromatin biology, developmental biology and genomics. She is known for her work in understanding how the genome is regulated, in particular to how developmental enhancers function, how they interact within three dimensional chromatin topologies and how they drive cell fate decisions during embryogenesis. She is Head of the Department of Genome Biology at the European Molecular Biology Laboratory (EMBL). Furlong was elected a member of the European Molecular Biology Organization (EMBO) in 2013, the Academia Europaea in 2016 and to EMBO’s research council in 2018.
{{cite book}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: CS1 maint: multiple names: authors list (link)