Shengwang Du is a professor in the department of physics at University of Texas at Dallas.
He is noted for having led a team that performed an experiment [1] showing individual photons cannot travel faster than the speed of light (c) in a vacuum, thus apparently removing one approach to time travel. [2] [3]
Du claims in a peer reviewed journal to have observed single photons' precursors, saying that they travel no faster than c in a vacuum. His experiment involved slow light as well as passing light through a vacuum. He generated two single photons, passing one through rubidium atoms that had been cooled with a laser (thus slowing the light) and passing one through a vacuum. Both times, apparently, the precursors preceded the photons' main bodies, and the precursor traveled at c in a vacuum. According to Du, this implies that there is no possibility of light traveling faster than c (and, thus, violating causality). [4] Some members of the media took this as an indication of proof that time travel to the past using superluminal speeds was impossible. [5]
Faster-than-light travel and communication are the conjectural propagation of matter or information faster than the speed of light. The special theory of relativity implies that only particles with zero rest mass may travel at the speed of light, and that nothing may travel faster.
A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that always move at the speed of light measured in vacuum. The photon belongs to the class of boson particles.
The speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to 299,792,458 metres per second. According to the special theory of relativity, c is the upper limit for the speed at which conventional matter or energy can travel through space.
Time travel is the hypothetical activity of traveling into the past or future. Time travel is a widely recognized concept in philosophy and fiction, particularly science fiction. In fiction, time travel is typically achieved through the use of a hypothetical device known as a time machine. The idea of a time machine was popularized by H. G. Wells's 1895 novel The Time Machine.
The Michelson–Morley experiment was an attempt to measure the motion of the Earth relative to the luminiferous aether, a supposed medium permeating space that was thought to be the carrier of light waves. The experiment was performed between April and July 1887 by American physicists Albert A. Michelson and Edward W. Morley at what is now Case Western Reserve University in Cleveland, Ohio, and published in November of the same year.
Laser cooling includes several techniques where atoms, molecules, and small mechanical systems are cooled with laser light. The directed energy of lasers is often associated with heating materials, e.g. laser cutting, so it can be counterintuitive that laser cooling often results in sample temperatures approaching absolute zero. It is a routine step in many atomic physics experiments where the laser-cooled atoms are then subsequently manipulated and measured, or in technologies, such as atom-based quantum computing architectures. Laser cooling relies on the change in momentum when an object, such as an atom, absorbs and re-emits a photon. For example, if laser light illuminates a warm cloud of atoms from all directions and the laser's frequency is tuned below an atomic resonance, the atoms will be cooled. This common type of laser cooling relies on the Doppler effect where individual atoms will preferentially absorb laser light from the direction opposite to the atom's motion. The absorbed light is re-emitted by the atom in a random direction. After repeated emission and absorption of light the net effect on the cloud of atoms is that they will expand more slowly. The slower expansion reflects a decrease in the velocity distribution of the atoms, which corresponds to a lower temperature and therefore the atoms have been cooled. For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity, therefore the lower the distribution of velocities, the lower temperature of the particles.
A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables to explain the behavior of particles like photons and electrons. The test empirically evaluates the implications of Bell's theorem. As of 2015, all Bell tests have found that the hypothesis of local hidden variables is inconsistent with the way that physical systems behave.
Emission theory, also called emitter theory or ballistic theory of light, was a competing theory for the special theory of relativity, explaining the results of the Michelson–Morley experiment of 1887. Emission theories obey the principle of relativity by having no preferred frame for light transmission, but say that light is emitted at speed "c" relative to its source instead of applying the invariance postulate. Thus, emitter theory combines electrodynamics and mechanics with a simple Newtonian theory. Although there are still proponents of this theory outside the scientific mainstream, this theory is considered to be conclusively discredited by most scientists.
Spontaneous parametric down-conversion is a nonlinear instant optical process that converts one photon of higher energy into a pair of photons of lower energy, in accordance with the law of conservation of energy and law of conservation of momentum. It is an important process in quantum optics, for the generation of entangled photon pairs, and of single photons.
The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present. The time delay is caused by time dilation, which increases the time it takes light to travel a given distance from the perspective of an outside observer. In a 1964 article entitled Fourth Test of General Relativity, Irwin Shapiro wrote:
Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2×10−4 sec when the radar pulses pass near the sun. Such a change, equivalent to 60 km in distance, could now be measured over the required path length to within about 5 to 10% with presently obtainable equipment.
Ronald Lawrence Mallett is an American theoretical physicist, academic and author. He has been a faculty member of the University of Connecticut since 1975 and is best known for his position on the possibility of time travel.
Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed. Inside an optical material, and if the intensity of the beams is high enough, the beams may affect each other through a variety of non-linear effects. In pure vacuum, some weak scattering of light by light exists as well. Also, above some threshold of this center-of-mass energy of the system of the two photons, matter can be created.
The Scharnhorst effect is a hypothetical phenomenon in which light signals travel slightly faster than c between two closely spaced conducting plates. It was first predicted in a 1990 paper by Klaus Scharnhorst of the Humboldt University of Berlin, Germany. He showed using quantum electrodynamics that the effective refractive index n, at low frequencies, in the space between the plates was less than 1. Gabriel Barton and Scharnhorst in 1993 claimed that either signal velocity can exceed c or that the imaginary part of n is negative.
The Elitzur–Vaidman bomb-tester is a quantum mechanics thought experiment that uses interaction-free measurements to verify that a bomb is functional without having to detonate it. It was conceived in 1993 by Avshalom Elitzur and Lev Vaidman. Since their publication, real-world experiments have confirmed that their theoretical method works as predicted.
In optics, slow light is the propagation of an optical pulse or other modulation of an optical carrier at a very low group velocity. Slow light occurs when a propagating pulse is substantially slowed by the interaction with the medium in which the propagation takes place.
When using the term "the speed of light" it is sometimes necessary to make the distinction between its one-way speed and its two-way speed. The "one-way" speed of light, from a source to a detector, cannot be measured independently of a convention as to how to synchronize the clocks at the source and the detector. What can however be experimentally measured is the round-trip speed from the source to a mirror and back again to detector. Albert Einstein chose a synchronization convention that made the one-way speed equal to the two-way speed. The constancy of the one-way speed in any given inertial frame is the basis of his special theory of relativity, although all experimentally verifiable predictions of this theory do not depend on that convention.
Modern searches for Lorentz violation are scientific studies that look for deviations from Lorentz invariance or symmetry, a set of fundamental frameworks that underpin modern science and fundamental physics in particular. These studies try to determine whether violations or exceptions might exist for well-known physical laws such as special relativity and CPT symmetry, as predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity.
In quantum electrodynamics (QED), the Schwinger limit is a scale above which the electromagnetic field is expected to become nonlinear. The limit was first derived in one of QED's earliest theoretical successes by Fritz Sauter in 1931 and discussed further by Werner Heisenberg and his student Hans Heinrich Euler. The limit, however, is commonly named in the literature for Julian Schwinger, who derived the leading nonlinear corrections to the fields and calculated the rate of electron–positron pair production in a strong electric field. The limit is typically reported as a maximum electric field or magnetic field before nonlinearity for the vacuum of
Stephen Ernest Harris is an American physicist known for his contributions to electromagnetically induced transparency (EIT), modulation of single photons, and x-ray emission.
Mikkel F. Andersen is a physicist, Associate Professor at the University of Otago, and an investigator at the Dodd-Walls Centre in Dunedin, New Zealand. His research deals with ways to capture fast-moving atoms.