Shifted force method

Last updated

The net electrostatic force acting on a charged particle with index contained within a collection of particles is given as:

where is the spatial coordinate, is a particle index, is the separation distance between particles and , is the unit vector from particle to particle , is the force magnitude, and and are the charges of particles and , respectively. With the electrostatic force being proportional to , individual particle-particle interactions are long-range in nature, presenting a challenging computational problem in the simulation of particulate systems. To determine the net forces acting on particles, the Ewald or Lekner summation methods are generally employed. One alternative and usually computationally faster technique based on the notion that interactions over large distances (e.g. > 1 nm) are insignificant to the net forces acting in certain systems is the method of spherical truncation. [1] The equations for basic truncation are:

where is the cutoff distance. Simply applying this cutoff method introduces a discontinuity in the force at that results in particles experiencing sudden impulses when other particles cross the boundary of their respective interaction spheres. In the particular case of electrostatic forces, as the force magnitude is large at the boundary, this unphysical feature can compromise simulation accuracy. A way to correct this problem is to shift the force to zero at , thus removing the discontinuity. [2] This can be accomplished with a variety of functions, but the most simple/computationally efficient approach is to simply subtract the value of the electrostatic force magnitude at the cutoff distance as such:

As mentioned before, the shifted force (SF) method is generally suited for systems that do not have net electrostatic interactions that are long-range in nature. This is the case for condensed systems that show electric-field screening effects. Note that anisotropic systems (e.g. interfaces) may not be accurately simulated with the SF method, [3] although an adaption of the SF method for interfaces has been recently suggested. [4] Additionally, note that certain system properties (e.g. energy-dependent observables) will be more greatly influenced by the use of the SF method than others. It is not safe to assume, without reasonable argument, that the SF method can be used to accurately determine a certain property for a given system. If the accuracy of the SF method need be tested, this may be done by testing for convergence (i.e. showing that simulation results do not significantly change with increasing cutoff) or by comparing with results obtained through other electrostatics techniques (such as Ewald) that are known to perform well. [5] As a rough rule of thumb, results obtained with the SF method tend to be sufficiently accurate when the cutoff is at least five times larger than the distance of the near neighbor interactions.

With the SF method, a discontinuity is still present in the derivative of the force, and it may be preferable for ionic liquids to further alter the force equation as to remove that discontinuity. [6]

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

<span class="mw-page-title-main">Electric field</span> Physical field surrounding an electric charge

An electric field is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, one of the four fundamental interactions of nature.

<span class="mw-page-title-main">Permittivity</span> Measure of the electric polarizability of a dielectric

In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.

<span class="mw-page-title-main">Electric potential</span> Line integral of the electric field

The electric potential is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in an electric field. More precisely, it is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. Furthermore, the motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation. By definition, the electric potential at the reference point is zero units. Typically, the reference point is earth or a point at infinity, although any point can be used.

In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as

<span class="mw-page-title-main">Poisson's equation</span> Expression frequently encountered in mathematical physics, generalization of Laplaces equation.

Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

<span class="mw-page-title-main">Electrostatics</span> Study of stationary electric charge

Electrostatics is a branch of physics that studies electric charges at rest.

<span class="mw-page-title-main">Classical electromagnetism</span> Branch of theoretical physics

Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics.

In plasmas and electrolytes, the Debye length, is a measure of a charge carrier's net electrostatic effect in a solution and how far its electrostatic effect persists. With each Debye length the charges are increasingly electrically screened and the electric potential decreases in magnitude by 1/e. A Debye sphere is a volume whose radius is the Debye length. Debye length is an important parameter in plasma physics, electrolytes, and colloids. The corresponding Debye screening wave vector for particles of density , charge at a temperature is given by in Gaussian units. Expressions in MKS units will be given below. The analogous quantities at very low temperatures are known as the Thomas–Fermi length and the Thomas–Fermi wave vector. They are of interest in describing the behaviour of electrons in metals at room temperature.

A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system for three-dimensional Euclidean space, . Similarly to Taylor series, multipole expansions are useful because oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real- or complex-valued and is defined either on , or less often on for some other .

Electric field work is the work performed by an electric field on a charged particle in its vicinity. A charged particle located within the influence of an electric field experiences an interaction that is formally equivalent to other work by force fields in physics; the electric field is said to perform work on the particle. The work per unit of charge is defined by moving a negligible test charge between two points, and is expressed as the difference in electric potential at those points. The work can be done, for example, by electrochemical devices or different metals junctions generating an electromotive force. The physical and mathematical formalism for electrical work is identical to that of mechanical work.

<span class="mw-page-title-main">Electric potential energy</span> Potential energy that results from conservative Coulomb forces

Electric potential energy is a potential energy that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system. An object may have electric potential energy by virtue of two key elements: its own electric charge and its relative position to other electrically charged objects.

The Coulomb constant, the electric force constant, or the electrostatic constant (denoted ke, k or K) is a proportionality constant in electrostatics equations. In SI base units it is equal to 8.9875517923(14)×109 kg⋅m3⋅s−4⋅A−2. It was named after the French physicist Charles-Augustin de Coulomb (1736–1806) who introduced Coulomb's law.

<span class="mw-page-title-main">Larmor formula</span> Gives the total power radiated by an accelerating, nonrelativistic point charge

In electrodynamics, the Larmor formula is used to calculate the total power radiated by a nonrelativistic point charge as it accelerates. It was first derived by J. J. Larmor in 1897, in the context of the wave theory of light.

The method of image charges is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with imaginary charges, which replicates the boundary conditions of the problem.

Ewald summation, named after Paul Peter Ewald, is a method for computing long-range interactions in periodic systems. It was first developed as the method for calculating electrostatic energies of ionic crystals, and is now commonly used for calculating long-range interactions in computational chemistry. Ewald summation is a special case of the Poisson summation formula, replacing the summation of interaction energies in real space with an equivalent summation in Fourier space. In this method, the long-range interaction is divided into two parts: a short-range contribution, and a long-range contribution which does not have a singularity. The short-range contribution is calculated in real space, whereas the long-range contribution is calculated using a Fourier transform. The advantage of this method is the rapid convergence of the energy compared with that of a direct summation. This means that the method has high accuracy and reasonable speed when computing long-range interactions, and it is thus the de facto standard method for calculating long-range interactions in periodic systems. The method requires charge neutrality of the molecular system in order to accurately calculate the total Coulombic interaction. A study of the truncation errors introduced in the energy and force calculations of disordered point-charge systems is provided by Kolafa and Perram.

In atomic, molecular, and optical physics and quantum chemistry, the molecular Hamiltonian is the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule. This operator and the associated Schrödinger equation play a central role in computational chemistry and physics for computing properties of molecules and aggregates of molecules, such as thermal conductivity, specific heat, electrical conductivity, optical, and magnetic properties, and reactivity.

<span class="mw-page-title-main">Coulomb's law</span> Fundamental physical law of electromagnetism

Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force. Although the law was known earlier, it was first published in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism, maybe even its starting point, as it made it possible to discuss the quantity of electric charge in a meaningful way.

<span class="mw-page-title-main">Electric dipole moment</span> Measure of positive and negative charges

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.

References

  1. Fennell, C. J.; Gezelter, J. D. (2006). "Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics". The Journal of Chemical Physics. 124 (23): 234104. Bibcode:2006JChPh.124w4104F. doi:10.1063/1.2206581. PMID   16821904.
  2. Toxvaerd, S. R.; Dyre, J. C. (2011). "Communication: Shifted forces in molecular dynamics". The Journal of Chemical Physics. 134 (8): 081102. arXiv: 1012.1116 . Bibcode:2011JChPh.134h1102T. doi:10.1063/1.3558787. PMID   21361519. S2CID   10098572.
  3. Spohr, E. (1997). "Effect of electrostatic boundary conditions and system size on the interfacial properties of water and aqueous solutions". The Journal of Chemical Physics. 107 (16): 6342–6348. Bibcode:1997JChPh.107.6342S. doi:10.1063/1.474295.
  4. Welch, D. A.; Mehdi, B. L.; Hatchell, H. J.; Faller, R.; Evans, J. E.; Browning, N. D. (2015). "Using molecular dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM". Advanced Structural and Chemical Imaging. 1. doi: 10.1186/s40679-014-0002-2 .
  5. Hansen, J. S.; Schrøder, T. B.; Dyre, J. C. (2012). "Simplistic Coulomb Forces in Molecular Dynamics: Comparing the Wolf and Shifted-Force Approximations". The Journal of Physical Chemistry B. 116 (19): 5738–5743. arXiv: 1108.5267 . doi:10.1021/jp300750g. PMID   22497264. S2CID   22338540.
  6. Kale, S.; Herzfeld, J. (2011). "Pairwise Long-Range Compensation for Strongly Ionic Systems". Journal of Chemical Theory and Computation. 7 (11): 3620–3624. doi:10.1021/ct200392u. PMC   3254088 . PMID   22247701.