Sidera Lodoicea

Last updated • 2 min readFrom Wikipedia, The Free Encyclopedia
Cassini Jeand Cassini.jpg
Cassini

Sidera Lodoicea /ˈsɪdərəˌldˈɪsə/ is the name given by the astronomer Giovanni Domenico Cassini to the four moons of Saturn discovered by him in the years 1671, 1672, and 1684 and published in his Découverte de deux nouvelles planètes autour de Saturne in 1673 and in the Journal des sçavans in 1686. These satellites are today known by the following names, given in 1847:

Iapetus Iapetus as seen by the Cassini probe - 20071008.jpg
Iapetus
Rhea Rhea hi-res PIA07763.jpg
Rhea
Tethys Tethys cassini.jpg
Tethys
Dione Dione.jpg
Dione

The name Sidera Lodoicea means "Louisian Stars", from Latin sidus "star" and Lodoiceus, a nonce adjective coined from Lodoicus, one of several Latin forms of the French name Louis (reflecting an older form, Lodhuwig). Cassini intended the name to honor King Louis XIV of France, who reigned from 1643 to 1715, and who was Cassini's benefactor as patron of the Paris Observatory, of which Cassini was the director.

The name was modelled on Sidera Medicea, "Medicean stars", the Latin name used by Galileo to name the four Galilean satellites of Jupiter, in honor of the Florentine house of Medici.

Louis XIV Louis-xiv-lebrunl.jpg
Louis XIV

The following contemporary (1686) notice records Cassini's choice of name, and explains his rationale for the same:

In the Conclusion, the Discoverer considers that the Antient Astronomers, having translated the Names of their Heroes among the Starrs, those Names have continued down to us unchanged, notwithstanding the endeavour of following Ages to alter them; and that Galileo, after their Example, had honoured the House of the Medici with the discovery of the Satellites of Jupiter, made by him under the Protection of Cosmus II; which Starrs will be always known by the Name of Sidera Medicea. Wherefore he concludes that the Satellites of Saturn, being much more exalted and more difficult to discover, are not unworthy to bear the Name of Louis le Grand, under whose Reign and in whose Observatory the same have been detected, which therefore he calls Sidera Lodoicea, not doubting but to have perpetuated the Name of that King, by a Monument much more lasting than those of Brass and Marble, which shall be erected to his Memory. [1]

Notes

Related Research Articles

<span class="mw-page-title-main">Galilean moons</span> Four largest moons of Jupiter

The Galilean moons, or Galilean satellites, are the four largest moons of Jupiter: Io, Europa, Ganymede, and Callisto. They are the most readily visible Solar System objects after Saturn, the dimmest of the classical planets; though their closeness to bright Jupiter makes naked-eye observation very difficult, they are readily seen with common binoculars, even under night sky conditions of high light pollution. The invention of the telescope enabled the discovery of the moons in 1610. Through this, they became the first Solar System objects discovered since humans have started tracking the classical planets, and the first objects to be found to orbit any planet beyond Earth.

<span class="mw-page-title-main">Ole Rømer</span> Danish astronomer (1644–1710)

Ole Christensen Rømer was a Danish astronomer who, in 1676, first demonstrated that light travels at a finite speed. Rømer also invented the modern thermometer showing the temperature between two fixed points, namely the points at which water respectively boils and freezes.

<span class="mw-page-title-main">Rhea (moon)</span> Moon of Saturn

Rhea is the second-largest moon of Saturn and the ninth-largest moon in the Solar System, with a surface area that is comparable to the area of Australia. It is the smallest body in the Solar System for which precise measurements have confirmed a shape consistent with hydrostatic equilibrium. Rhea has a nearly circular orbit around Saturn, but it is also tidally locked, like Saturn's other major moons; that is, it rotates with the same period it revolves (orbits), so one hemisphere always faces towards the planet.

<span class="mw-page-title-main">Tethys (moon)</span> Moon of Saturn

Tethys, or Saturn III, is the fifth-largest moon of Saturn, measuring about 1,060 km (660 mi) across. It was discovered by Giovanni Domenico Cassini in 1684, and is named after the titan Tethys of Greek mythology.

<span class="mw-page-title-main">Iapetus (moon)</span> Moon of Saturn

Iapetus is the outermost of Saturn's large moons. With an estimated diameter of 1,469 km (913 mi), it is the third-largest moon of Saturn and the eleventh-largest in the Solar System. Named after the Titan Iapetus, the moon was discovered in 1671 by Giovanni Domenico Cassini.

<span class="mw-page-title-main">Dione (moon)</span> Moon of Saturn

Dione, also designated Saturn IV, is the fourth-largest moon of Saturn. With a mean diameter of 1,123 km and a density of about 1.48 g/cm3, Dione is composed of an icy mantle and crust overlying a silicate rocky core, with rock and water ice roughly equal in mass. Its trailing hemisphere is marked by large cliffs and scarps called chasmata; the trailing hemisphere is also significantly darker compared to the leading hemisphere.

<span class="mw-page-title-main">Paris Observatory</span> Foremost astronomical observatory of France

The Paris Observatory, a research institution of the Paris Sciences et Lettres University, is the foremost astronomical observatory of France, and one of the largest astronomical centers in the world. Its historic building is on the Left Bank of the Seine in central Paris, but most of the staff work on a satellite campus in Meudon, a suburb southwest of Paris.

The timeline of discovery of Solar System planets and their natural satellites charts the progress of the discovery of new bodies over history. Each object is listed in chronological order of its discovery, identified through its various designations, and the discoverer(s) listed.

<span class="mw-page-title-main">Moons of Saturn</span> Natural satellites of the planet Saturn

The moons of Saturn are numerous and diverse, ranging from tiny moonlets only tens of meters across to the enormous Titan, which is larger than the planet Mercury. There are 146 moons with confirmed orbits, the most of any planet in the solar system. This number does not include the many thousands of moonlets embedded within Saturn's dense rings, nor hundreds of possible kilometer-sized distant moons that have been observed on single occasions. Seven Saturnian moons are large enough to have collapsed into a relaxed, ellipsoidal shape, though only one or two of those, Titan and possibly Rhea, are currently in hydrostatic equilibrium. Three moons are particularly notable. Titan is the second-largest moon in the Solar System, with a nitrogen-rich Earth-like atmosphere and a landscape featuring river networks and hydrocarbon lakes. Enceladus emits jets of ice from its south-polar region and is covered in a deep layer of snow. Iapetus has contrasting black and white hemispheres as well as an extensive ridge of equatorial mountains among the tallest in the solar system.

<span class="mw-page-title-main">Jean Picard</span> French astronomer

Jean Picard was a French astronomer and priest born in La Flèche, where he studied at the Jesuit Collège Royal Henry-Le-Grand.

The definition of the term planet has changed several times since the word was coined by the ancient Greeks. Greek astronomers employed the term ἀστέρες πλανῆται, 'wandering stars', for star-like objects which apparently moved over the sky. Over the millennia, the term has included a variety of different celestial bodies, from the Sun and the Moon to satellites and asteroids.

<span class="mw-page-title-main">Neith (hypothetical moon)</span> Hypothetical moon of Venus

Neith is a hypothetical natural satellite of Venus reportedly sighted by Giovanni Cassini in 1672 and by several other astronomers in following years. It was 'observed' up to 30 times by astronomers until 1770, when there were no new sightings and it was not found during the transit of Venus in 1761 and 1769.

<span class="mw-page-title-main">Giovanni Domenico Cassini</span> Italian-French mathematician and astronomer (1625–1712)

GiovanniDomenico Cassini, also known as Jean-Dominique Cassini was an Italian mathematician, astronomer, astrologer and engineer. Cassini was born in Perinaldo, near Imperia, at that time in the County of Nice, part of the Savoyard state. Cassini is known for his work on astronomy and engineering. He discovered four satellites of Saturn and noted the division of its rings; the Cassini Division was named after him. Giovanni Domenico Cassini was also the first of his family to begin work on the project of creating a topographic map of France. In addition, Cassini also created the first scientific map of the moon.

<span class="mw-page-title-main">Rømer's determination of the speed of light</span> 1676 demonstration of lights finite speed by Danish astronomer Ole Rømer

Rømer's determination of the speed of light was the demonstration in 1676 that light has an apprehensible, measurable speed and so does not travel instantaneously. The discovery is usually attributed to Danish astronomer Ole Rømer, who was working at the Royal Observatory in Paris at the time.

<span class="mw-page-title-main">Exploration of Io</span> Overview of the exploration of Io, Jupiters innermost Galilean and third-largest moon

The exploration of Io, Jupiter's innermost Galilean and third-largest moon, began with its discovery in 1610 and continues today with Earth-based observations and visits by spacecraft to the Jupiter system. Italian astronomer Galileo Galilei was the first to record an observation of Io on January 8, 1610, though Simon Marius may have also observed Io at around the same time. During the 17th century, observations of Io and the other Galilean satellites helped with the measurement of longitude by map makers and surveyors, with validation of Kepler's Third Law of planetary motion, and with measurement of the speed of light. Based on ephemerides produced by astronomer Giovanni Cassini and others, Pierre-Simon Laplace created a mathematical theory to explain the resonant orbits of three of Jupiter's moons, Io, Europa, and Ganymede. This resonance was later found to have a profound effect on the geologies of these moons. Improved telescope technology in the late 19th and 20th centuries allowed astronomers to resolve large-scale surface features on Io as well as to estimate its diameter and mass.

Sidera can be:

<span class="mw-page-title-main">Planetary-mass moon</span> Planetary-mass bodies that are also natural satellites

A planetary-mass moon is a planetary-mass object that is also a natural satellite. They are large and ellipsoidal in shape. Moons may be in hydrostatic equilibrium due to tidal or radiogenic heating, in some cases forming a subsurface ocean. Two moons in the Solar System, Ganymede and Titan, are larger than the planet Mercury, and a third, Callisto, is just slightly smaller than it, although all three are less massive. Additionally, seven – Ganymede, Titan, Callisto, Io, Earth's Moon, Europa, and Triton – are larger and more massive than the dwarf planets Pluto and Eris.

<span class="mw-page-title-main">Galileo's objective lens</span> Lens used in the Galilean telescope

Galileo's objective lens is a specific objective lens held in the Museo Galileo, Florence, Italy. It was used by Galileo Galilei in the Galilean telescope with which he discovered the four largest moons of Jupiter in 1610. The lens has a diameter of 38mm and a gilt brass housing. The frame is made of ebony and ivory and has dimensions of 410mm x 300mm.

References