Signpost sequence

Last updated

In mathematics and apportionment theory, a signpost sequence is a sequence of real numbers, called signposts, used in defining generalized rounding rules. A signpost sequence defines a set of signposts that mark the boundaries between neighboring whole numbers: a real number less than the signpost is rounded down, while numbers greater than the signpost are rounded up. [1]

Contents

Signposts allow for a more general concept of rounding than the usual one. For example, the signposts of the rounding rule "always round down" (truncation) are given by the signpost sequence

Formal definition

Mathematically, a signpost sequence is a localized sequence, meaning the th signpost lies in the th interval with integer endpoints: for all . This allows us to define a general rounding function using the floor function:

Where exact equality can be handled with any tie-breaking rule, most often by rounding to the nearest even.

Applications

In the context of apportionment theory, signpost sequences are used in defining highest averages methods, a set of algorithms designed to achieve equal representation between different groups. [2]

Related Research Articles

In number theory, Waring's problem asks whether each natural number k has an associated positive integer s such that every natural number is the sum of at most s natural numbers raised to the power k. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers. Waring's problem was proposed in 1770 by Edward Waring, after whom it is named. Its affirmative answer, known as the Hilbert–Waring theorem, was provided by Hilbert in 1909. Waring's problem has its own Mathematics Subject Classification, 11P05, "Waring's problem and variants".

<span class="mw-page-title-main">Floor and ceiling functions</span> Nearest integers from a number

In mathematics, the floor function (or greatest integer function) is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted x or floor(x). Similarly, the ceiling function maps x to the smallest integer greater than or equal to x, denoted x or ceil(x).

<span class="mw-page-title-main">Rounding</span> Replacing a number with a simpler value

Rounding or rounding off means replacing a number with an approximate value that has a shorter, simpler, or more explicit representation. For example, replacing $23.4476 with $23.45, the fraction 312/937 with 1/3, or the expression √2 with 1.414.

<span class="mw-page-title-main">Binary logarithm</span> Exponent of a power of two

In mathematics, the binary logarithm is the power to which the number 2 must be raised to obtain the value n. That is, for any real number x,

In mathematics, economics, and political science, the highest averages methods, also called divisor methods, are a class of apportionment algorithms for proportional representation. Divisor algorithms seek to fairly divide a legislature between agents. More generally, divisor methods are used to divide or round a whole number of objects being used to represent (non-whole) shares of a total.

<span class="mw-page-title-main">Fractional part</span> Excess of a non-negative real number beyond its integer part

The fractional part or decimal part of a non‐negative real number is the excess beyond that number's integer part. The latter is defined as the largest integer not greater than x, called floor of x or . Then, the fractional part can be formulated as a difference:

In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. Formulas for calculating primes do exist, however, they are computationally very slow. A number of constraints are known, showing what such a "formula" can and cannot be.

In model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the first-order language of fields that is true for the complex numbers is also true for any algebraically closed field of characteristic 0.

In number theory, the integer square root (isqrt) of a non-negative integer n is the non-negative integer m which is the greatest integer less than or equal to the square root of n,

In mathematics, a pairing function is a process to uniquely encode two natural numbers into a single natural number.

In mathematics, the Legendre sieve, named after Adrien-Marie Legendre, is the simplest method in modern sieve theory. It applies the concept of the Sieve of Eratosthenes to find upper or lower bounds on the number of primes within a given set of integers. Because it is a simple extension of Eratosthenes' idea, it is sometimes called the Legendre–Eratosthenes sieve.

In number theory, Mills' constant is defined as the smallest positive real number A such that the floor function of the double exponential function

Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proven by Euclid in his work Elements. There are several proofs of the theorem.

A non-integer representation uses non-integer numbers as the radix, or base, of a positional numeral system. For a non-integer radix β > 1, the value of

In mathematics, a Beatty sequence is the sequence of integers found by taking the floor of the positive multiples of a positive irrational number. Beatty sequences are named after Samuel Beatty, who wrote about them in 1926.

The Lambek–Moser theorem is a mathematical description of partitions of the natural numbers into two complementary sets. For instance, it applies to the partition of numbers into even and odd, or into prime and non-prime. There are two parts to the Lambek–Moser theorem. One part states that any two non-decreasing integer functions that are inverse, in a certain sense, can be used to split the natural numbers into two complementary subsets, and the other part states that every complementary partition can be constructed in this way. When a formula is known for the th natural number in a set, the Lambek–Moser theorem can be used to obtain a formula for the th number not in the set.

<span class="mw-page-title-main">Dedekind number</span> Combinatorial sequence of numbers

In mathematics, the Dedekind numbers are a rapidly growing sequence of integers named after Richard Dedekind, who defined them in 1897. The Dedekind number M(n) is the number of monotone boolean functions of n variables. Equivalently, it is the number of antichains of subsets of an n-element set, the number of elements in a free distributive lattice with n generators, and one more than the number of abstract simplicial complexes on a set with n elements.

In the mathematical theory of non-standard positional numeral systems, the Komornik–Loreti constant is a mathematical constant that represents the smallest base q for which the number 1 has a unique representation, called its q-development. The constant is named after Vilmos Komornik and Paola Loreti, who defined it in 1998.

In mathematics, the Wythoff array is an infinite matrix of integers derived from the Fibonacci sequence and named after Dutch mathematician Willem Abraham Wythoff. Every positive integer occurs exactly once in the array, and every integer sequence defined by the Fibonacci recurrence can be derived by shifting a row of the array.

Mathematics of apportionment describes mathematical principles and algorithms for fair allocation of identical items among parties with different entitlements. Such principles are used to apportion seats in parliaments among federal states or political parties. See apportionment (politics) for the more concrete principles and issues related to apportionment, and apportionment by country for practical methods used around the world.

References

  1. Pukelsheim, Friedrich (2017), "From Reals to Integers: Rounding Functions, Rounding Rules", Proportional Representation: Apportionment Methods and Their Applications, Springer International Publishing, pp. 71–93, doi:10.1007/978-3-319-64707-4_4, ISBN   978-3-319-64707-4 , retrieved 2021-09-01
  2. Balinski, Michel L.; Young, H. Peyton (1982). Fair Representation: Meeting the Ideal of One Man, One Vote . New Haven: Yale University Press. ISBN   0-300-02724-9.