Simple DNS Plus

Last updated
Simple DNS Plus
Developer(s) JH Software
Stable release
9.1 / 28 October 2021
Operating system Microsoft Windows
Available inEnglish
Type DNS server
License proprietary
Website www.simpledns.plus

Oi

Simple DNS Plus is a DNS server software product that runs on x86 and x64 editions of Windows operating system.

Contents

All options and settings are available directly from a Windows user interface. It provides wizards for common tasks such as setting up new zones, importing data, making bulk updates, etc.

It has full support for IPv6. It has an option to control protocol preference (IPv4 / IPv6) on dual-stack computers, and it can even act as IPv6-to-IPv4 or IPv4-to-IPv6 forwarder.

It has full support for internationalized domain names (IDNs). You can enter domain names with native characters directly (no punycode conversion needed), and have an option to display native character or punycoded domain names anywhere in the user interface, and quickly switch between these modes.

You can create DNS records or entire zone files from other applications or web-sites and prompt Simple DNS Plus to dynamically load and use this through command line options, a simple HTTP API, and a full .NET/COM programming API.

Simple DNS Plus is based on the Microsoft .NET Framework 4.8 and is 100% managed code, protecting it from common security issues such as buffer overruns, and making it run natively on both 32 bit and 64 bit CPUs and Windows versions, including Windows Vista.

History / Versions

Version numbers, date released, and new feature highlights

Version 1.00 - 3 June 1999

Version 2.00 - 10 December 1999

Version 3.00 - 24 August 2000

Version 3.20 - 2 April 2001

Version 3.50 - 3 October 2003

Version 3.60 - 27 June 2004

Version 4.00 - 10 April 2005

Version 5.0 - 17 January 2008

Version 5.0 was re-written for the .NET Framework 2.0

Version 5.1 - 8 July 2008

Version 5.2 - 23 April 2009

Version 5.3 - 27 October 2015

Version 6.0 - 20 April 2016

Version 7.0 - 19 May 2018

Version 8.0 - 2 July 2018

Version 9.0 - 28 September 2021

Version 9.1 - 28 October 2021

See also

Related Research Articles

The Domain Name System (DNS) is a hierarchical and distributed name service that provides a naming system for computers, services, and other resources in the Internet or other Internet Protocol (IP) networks. It associates various information with domain names assigned to each of the associated entities. Most prominently, it translates readily memorized domain names to the numerical IP addresses needed for locating and identifying computer services and devices with the underlying network protocols. The Domain Name System has been an essential component of the functionality of the Internet since 1985.

BIND is a suite of software for interacting with the Domain Name System (DNS). Its most prominent component, named, performs both of the main DNS server roles, acting as an authoritative name server for DNS zones and as a recursive resolver in the network. As of 2015, it is the most widely used domain name server software, and is the de facto standard on Unix-like operating systems. Also contained in the suite are various administration tools such as nsupdate and dig, and a DNS resolver interface library.

<span class="mw-page-title-main">IPv6</span> Version 6 of the Internet Protocol

Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and was intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.

Dynamic DNS (DDNS) is a method of automatically updating a name server in the Domain Name System (DNS), often in real time, with the active DDNS configuration of its configured hostnames, addresses or other information.

The DNS root zone is the top-level DNS zone in the hierarchical namespace of the Domain Name System (DNS) of the Internet.

Zero-configuration networking (zeroconf) is a set of technologies that automatically creates a usable computer network based on the Internet Protocol Suite (TCP/IP) when computers or network peripherals are interconnected. It does not require manual operator intervention or special configuration servers. Without zeroconf, a network administrator must set up network services, such as Dynamic Host Configuration Protocol (DHCP) and Domain Name System (DNS), or configure each computer's network settings manually.

The Domain Name System Security Extensions (DNSSEC) are a suite of extension specifications by the Internet Engineering Task Force (IETF) for securing data exchanged in the Domain Name System (DNS) in Internet Protocol (IP) networks. The protocol provides cryptographic authentication of data, authenticated denial of existence, and data integrity, but not availability or confidentiality.

In computer networking, localhost is a hostname that refers to the current computer used to access it. The name localhost is reserved for loopback purposes. It is used to access the network services that are running on the host via the loopback network interface. Using the loopback interface bypasses any local network interface hardware.

The domain name arpa is a top-level domain (TLD) in the Domain Name System (DNS) of the Internet. It is used predominantly for the management of technical network infrastructure. Prominent among such functions are the subdomains in-addr.arpa and ip6.arpa, which provide namespaces for reverse DNS lookup of IPv4 and IPv6 addresses, respectively.

example.com Domain name reserved for documentation purposes and as an example of the use of domain names

The domain names example.com, example.net, example.org, and example.edu are second-level domain names in the Domain Name System of the Internet. They are reserved by the Internet Assigned Numbers Authority (IANA) at the direction of the Internet Engineering Task Force (IETF) as special-use domain names for documentation purposes. The domain names are used widely in books, tutorials, sample network configurations, and generally as examples for the use of domain names. The Internet Corporation for Assigned Names and Numbers (ICANN) operates web sites for these domains with content that reflects their purpose.

A Domain Name System (DNS) zone file is a text file that describes a DNS zone. A DNS zone is a subset, often a single domain, of the hierarchical domain name structure of the DNS. The zone file contains mappings between domain names and IP addresses and other resources, organized in the form of text representations of resource records (RR). A zone file may be either a DNS master file, authoritatively describing a zone, or it may be used to list the contents of a DNS cache.

This article presents a comparison of the features, platform support, and packaging of many independent implementations of Domain Name System (DNS) name server software.

The domain name .local is a special-use domain name reserved by the Internet Engineering Task Force (IETF) so that it may not be installed as a top-level domain in the Domain Name System (DNS) of the Internet. As such it is similar to the other special domain names, such as .localhost. However, .local has since been designated for use in link-local networking, in applications of multicast DNS (mDNS) and zero-configuration networking (zeroconf) so that DNS service may be established without local installations of conventional DNS infrastructure on local area networks.

The Dynamic Host Configuration Protocol version 6 (DHCPv6) is a network protocol for configuring Internet Protocol version 6 (IPv6) hosts with IP addresses, IP prefixes, default route, local segment MTU, and other configuration data required to operate in an IPv6 network. It is not just the IPv6 equivalent of the Dynamic Host Configuration Protocol for IPv4.

TSIG is a computer-networking protocol defined in RFC 2845. Primarily it enables the Domain Name System (DNS) to authenticate updates to a DNS database. It is most commonly used to update Dynamic DNS or a secondary/slave DNS server. TSIG uses shared secret keys and one-way hashing to provide a cryptographically secure means of authenticating each endpoint of a connection as being allowed to make or respond to a DNS update.

In computing, Microsoft's Windows Vista and Windows Server 2008 introduced in 2007/2008 a new networking stack named Next Generation TCP/IP stack, to improve on the previous stack in several ways. The stack includes native implementation of IPv6, as well as a complete overhaul of IPv4. The new TCP/IP stack uses a new method to store configuration settings that enables more dynamic control and does not require a computer restart after a change in settings. The new stack, implemented as a dual-stack model, depends on a strong host-model and features an infrastructure to enable more modular components that one can dynamically insert and remove.

An IPv6 transition mechanism is a technology that facilitates the transitioning of the Internet from the Internet Protocol version 4 (IPv4) infrastructure in use since 1983 to the successor addressing and routing system of Internet Protocol Version 6 (IPv6). As IPv4 and IPv6 networks are not directly interoperable, transition technologies are designed to permit hosts on either network type to communicate with any other host.

<span class="mw-page-title-main">IPv6 address</span> Label to identify a network interface of a computer or other network node

An Internet Protocol version 6 address is a numeric label that is used to identify and locate a network interface of a computer or a network node participating in a computer network using IPv6. IP addresses are included in the packet header to indicate the source and the destination of each packet. The IP address of the destination is used to make decisions about routing IP packets to other networks.

Amazon Route 53 is a scalable and highly available Domain Name System (DNS) service. Released on 5 December 2010, it is part of Amazon.com's cloud computing platform, Amazon Web Services (AWS). The name is a possible reference to U.S. Routes, and "53" is a reference to the TCP/UDP port 53, where DNS server requests are addressed.

<span class="mw-page-title-main">Knot DNS</span>

Knot DNS is an open-source authoritative-only server for the Domain Name System. It was created from scratch and is actively developed by CZ.NIC, the .CZ domain registry. The purpose of this project is to supply an alternative open-source implementation of an authoritative DNS server suitable for TLD operators to increase overall security, stability and resiliency of the Domain Name System. It is implemented as a multi-threaded daemon, using a number of programming techniques and data structures to make the server very fast, notably Read-copy-update or a special kind of a radix tree.

References