Singulation

Last updated

Singulation is a method by which an RFID reader identifies a tag with a specific serial number from a number of tags in its field. This is necessary because if multiple tags respond simultaneously to a query, they will jam each other. In a typical commercial application, such as scanning a bag of groceries, potentially hundreds of tags might be within range of the reader.

Contents

When all the tags cooperate with the tag reader and follow the same anti-collision protocol, also called singulation protocol, [1] [2] [3] then the tag reader can read data from each and every tag without interference from the other tags.

Collision avoidance

Generally, a collision occurs when two entities require the same resource; for example, two ships with crossing courses in a narrows. In wireless technology, a collision occurs when two transmitters transmit at the same time with the same modulation scheme on the same frequency. In RFID technology, various strategies have been developed to overcome this situation.

Tree walking

Tree walking singulation RFID search environment.png
Tree walking singulation

There are different methods of singulation, but the most common is tree walking, which involves asking all tags with a serial number that starts with either a 1 or 0 to respond. If more than one responds, the reader might ask for all tags with a serial number that starts with 01 to respond, and then 010. It keeps doing this until it finds the tag it is looking for. Note that if the reader has some idea of what tags it wishes to interrogate, it can considerably optimise the search order. For example with some designs of tags, if a reader already suspects certain tags to be present then those tags can be instructed to remain silent, then tree walking can proceed without interference from these.

This simple protocol leaks considerable information because anyone able to eavesdrop on the tag reader alone can determine all but the last bit of a tag's serial number. Thus a tag can be (largely) identified so long as the reader's signal is receivable, which is usually possible at much greater distance than simply reading a tag directly. Because of privacy and security concerns related to this, the Auto-ID Labs have developed two more advanced singulation protocols, called Class 0 UHF and Class 1 UHF, which are intended to be resistant to these sorts of attacks.[ citation needed ] These protocols, which are based on tree-walking but include other elements, have a performance of up to 1000 tags per second.

The tree walking protocol may be blocked or partially blocked by RSA Security's blocker tags.

ALOHA

The first offered singulation protocol is the ALOHA protocol, originally used decades ago in ALOHAnet and very similar to CSMA/CD used by Ethernet. These protocols are mainly used in HF tags. In ALOHA, tags detect when a collision has occurred, and attempt to resend after waiting a random interval. The performance of such collide-and-resend protocols is approximately doubled if transmissions are synchronised to particular time-slots, and in this application time-slots for the tags are readily provided for by the reader. ALOHA does not leak information like the tree-walking protocol, and is much less vulnerable to blocker tags, which would need to be active devices with much higher power handling capabilities in order to work. However when the reader field is densely populated, ALOHA may make much less efficient use of available bandwidth than optimised versions of tree-walking. In the worst case, an ALOHA protocol network can reach a state of congestion collapse. The Auto-ID consortium is attempting to standardise a version of an ALOHA protocol which it calls Class 0 HF. This has a performance of up to 200 tags per second.

Slotted Aloha

Slotted Aloha is another variety offering better properties than the initial concept. It is implemented in most of the modern bulk detection systems, especially in the clothing industry.

Listen before talk

This concept is known from polite conversation. It applies as well to wireless communication, also named listen before send. With RFID it is applied for concurrence of readers (CSMA) as well as with concurrence of tags.

Related Research Articles

Carrier-sense multiple access with collision detection (CSMA/CD) is a medium access control (MAC) method used most notably in early Ethernet technology for local area networking. It uses carrier-sensing to defer transmissions until no other stations are transmitting. This is used in combination with collision detection in which a transmitting station detects collisions by sensing transmissions from other stations while it is transmitting a frame. When this collision condition is detected, the station stops transmitting that frame, transmits a jam signal, and then waits for a random time interval before trying to resend the frame.

Carrier-sense multiple access (CSMA) is a medium access control (MAC) protocol in which a node verifies the absence of other traffic before transmitting on a shared transmission medium, such as an electrical bus or a band of the electromagnetic spectrum.

In telecommunications and computer networks, a channel access method or multiple access method allows more than two terminals connected to the same transmission medium to transmit over it and to share its capacity. Examples of shared physical media are wireless networks, bus networks, ring networks and point-to-point links operating in half-duplex mode.

ALOHAnet, also known as the ALOHA System, or simply ALOHA, was a pioneering computer networking system developed at the University of Hawaii. ALOHAnet became operational in June 1971, providing the first public demonstration of a wireless packet data network.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder called a tag, a radio receiver, and a transmitter. When triggered by an electromagnetic interrogation pulse from a nearby RFID reader device, the tag transmits digital data, usually an identifying inventory number, back to the reader. This number can be used to track inventory goods.

ISO/IEC 14443Identification cards – Contactless integrated circuit cards – Proximity cards is an international standard that defines proximity cards used for identification, and the transmission protocols for communicating with it.

<span class="mw-page-title-main">Medium access control</span> Service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control (MAC), also called media access control, is the layer that controls the hardware responsible for interaction with the wired or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

<span class="mw-page-title-main">Hidden node problem</span> Problem in wireless networking

In wireless networking, the hidden node problem or hidden terminal problem occurs when a node can communicate with a wireless access point (AP), but cannot directly communicate with other nodes that are communicating with that AP. This leads to difficulties in medium access control sublayer since multiple nodes can send data packets to the AP simultaneously, which creates interference at the AP resulting in no packet getting through.

Exponential backoff is an algorithm that uses feedback to multiplicatively decrease the rate of some process, in order to gradually find an acceptable rate. These algorithms find usage in a wide range of systems and processes, with radio networks and computer networks being particularly notable.

Cover-coding is a technique for obscuring the data that is transmitted over an insecure link, to reduce the risks of snooping. An example of cover-coding would be for the sender to perform a bitwise XOR of the original data with a password or random number which is known to both sender and receiver. The resulting cover-coded data is then transmitted from sender to the receiver, who uncovers the original data by performing a further bitwise XOR operation on the received data using the same password or random number.

<span class="mw-page-title-main">Chip timing</span>

Transponder timing is a technique for measuring performance in sport events. A transponder working on a radio-frequency identification (RFID) basis is attached to the athlete and emits a unique code that is detected by radio receivers located at the strategic points in an event.

RuBee is a two-way active wireless protocol designed for harsh environments and high-security asset visibility applications. RuBee utilizes longwave signals to send and receive short data packets in a local regional network. The protocol is similar to the IEEE 802 protocols in that RuBee is networked by using on-demand, peer-to-peer and active radiating transceivers. RuBee is different in that it uses a low frequency carrier.

ISO/IEC 18000-3 is an international standard for passive RFID item level identification and describes the parameters for air interface communications at 13.56 MHz. The target markets for MODE 2 are in tagging systems for manufacturing, logistics, retail, transport and airline baggage. MODE 2 is especially suitable for high speed bulk conveyor fed applications.

DASH7 Alliance Protocol (D7A) is an open-source wireless sensor and actuator network protocol, which operates in the 433 MHz, 868 MHz and 915 MHz unlicensed ISM/SRD band. DASH7 provides multi-year battery life, range of up to 2 km, low latency for connecting with moving things, a very small open-source protocol stack, AES 128-bit shared-key encryption support, and data transfer of up to 167 kbit/s. The DASH7 Alliance Protocol is the name of the technology promoted by the non-profit consortium called the DASH7 Alliance.

<span class="mw-page-title-main">OCARI</span>

OCARI is a low-rate wireless personal area networks (LR-WPAN) communication protocol that derives from the IEEE 802.15.4 standard. It was developed by the following consortium during the OCARI project that is funded by the French National Research Agency (ANR):

<span class="mw-page-title-main">Mobile Slotted Aloha</span>

Mobile Slotted Aloha (MS-Aloha) is a wireless network protocol proposed for applications such as vehicle networks.

<span class="mw-page-title-main">EM Microelectronic</span> Swiss semiconductor manufacturer

EM Microelectronic, based in Marin, La Tène near Neuchâtel in Switzerland, is a developer and semiconductor manufacturer specialized in the design and production of ultra low power, low voltage integrated circuits for battery-operated and field-powered applications in consumer, automotive and industrial areas. It is a subsidiary of The Swatch Group.

The IEEE 1902.1-2009 standard is a wireless data communication protocol also known as RuBee, operates within the Low Frequency radio wave range of 30–900 kHz. Although very resistant to interference, metal, water and obstacles, it is very limited in range, usually only suitable for short-range networks. The baud rate is limited to 1,200 kB/s, making it a very low-rate communication network as well. This standard is aimed at the conception of wireless network of sensors and actuators in industrial and military environments. One of the major advantage 1902.1 tags is they are extremely low power and last for years on a simple coin size battery and they can be sealed in a MIL STD 810G package. RuBee tags emit virtually no RF and do not produce any Compromising Emanations, as a result are used in high security facilities. RuBee tags are safe and in use near and on high explosive facilities.

<span class="mw-page-title-main">Evolved wireless ad hoc network</span> Decentralized wireless network

An evolved wireless ad hoc network (EVAN) is a decentralized type of wireless network that compensates for the shortcomings of the existing wireless ad hoc network (WANET). An EVAN is ad hoc like a WANET because it does not rely on a pre-existing infrastructure, such as routers in wired networks or access points in wireless networks. Further advantages of WANETs over networks with a fixed topology include flexibility, scalability and lower administration costs. These characteristics of WANETs are maintained in EVAN as well. However, an EVAN has a physically separate resource management channel called tone channel, unlike existing WANETs. In WANETs, the data channel performs two roles: resource management and data transfer, but in EVAN, the data channel is used only for data transfer.

References

  1. Charu C. Aggarwal. "Managing and Mining Sensor Data". p. 372.
  2. O. Savry and F. Vacherand. As collected in Daniel Giusto, Antonio Iera, Giacomo Morabito, Luigi Atzori (editors). "The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications". p. 418.
  3. Technovelgy. "Problems With RFID".