Size function

Last updated

Size functions are shape descriptors, in a geometrical/topological sense. They are functions from the half-plane to the natural numbers, counting certain connected components of a topological space. They are used in pattern recognition and topology.

Contents

Formal definition

In size theory, the size function associated with the size pair is defined in the following way. For every , is equal to the number of connected components of the set that contain at least one point at which the measuring function (a continuous function from a topological space to [1] [2] ) takes a value smaller than or equal to . [3] The concept of size function can be easily extended to the case of a measuring function , where is endowed with the usual partial order . [4] A survey about size functions (and size theory) can be found in. [5]

An example of size function. (A) A size pair
(
M
,
ph
:
M
-
R
)
{\displaystyle (M,\varphi :M\to \mathbb {R} )}
, where
M
{\displaystyle M}
is the blue curve and
ph
:
M
-
R
{\displaystyle \varphi :M\to \mathbb {R} }
is the height function. (B) The set
{
p
[?]
M
:
ph
(
p
)
<=
b
}
{\displaystyle \{p\in M:\varphi (p)\leq b\}}
is depicted in green. (C) The set of points at which the measuring function
ph
{\displaystyle \varphi }
takes a value smaller than or equal to
a
{\displaystyle a}
, that is,
{
p
[?]
M
:
ph
(
p
)
<=
a
}
{\displaystyle \{p\in M:\varphi (p)\leq a\}}
, is depicted in red. (D) Two connected components of the set
{
p
[?]
M
:
ph
(
p
)
<=
b
}
{\displaystyle \{p\in M:\varphi (p)\leq b\}}
contain at least one point in
{
p
[?]
M
:
ph
(
p
)
<=
a
}
{\displaystyle \{p\in M:\varphi (p)\leq a\}}
, that is, at least one point where the measuring function
ph
{\displaystyle \varphi }
takes a value smaller than or equal to
a
{\displaystyle a}
. (E) The value of the size function
l
(
M
,
ph
)
{\displaystyle \ell _{(M,\varphi )}}
in the point
(
a
,
b
)
{\displaystyle (a,b)}
is equal to
2
{\displaystyle 2}
. SFesWiki.PNG
An example of size function. (A) A size pair , where is the blue curve and is the height function. (B) The set is depicted in green. (C) The set of points at which the measuring function takes a value smaller than or equal to , that is, , is depicted in red. (D) Two connected components of the set contain at least one point in , that is, at least one point where the measuring function takes a value smaller than or equal to . (E) The value of the size function in the point is equal to .

History and applications

Size functions were introduced in [6] for the particular case of equal to the topological space of all piecewise closed paths in a closed manifold embedded in a Euclidean space. Here the topology on is induced by the -norm, while the measuring function takes each path to its length. In [7] the case of equal to the topological space of all ordered -tuples of points in a submanifold of a Euclidean space is considered. Here the topology on is induced by the metric .

An extension of the concept of size function to algebraic topology was made in [2] where the concept of size homotopy group was introduced. Here measuring functions taking values in are allowed. An extension to homology theory (the size functor) was introduced in . [8] The concepts of size homotopy group and size functor are strictly related to the concept of persistent homology group [9] studied in persistent homology. It is worth to point out that the size function is the rank of the -th persistent homology group, while the relation between the persistent homology group and the size homotopy group is analogous to the one existing between homology groups and homotopy groups.

Size functions have been initially introduced as a mathematical tool for shape comparison in computer vision and pattern recognition, and have constituted the seed of size theory. [3] [10] [11] [12] [13] [14] [15] [16] [17] The main point is that size functions are invariant for every transformation preserving the measuring function. Hence, they can be adapted to many different applications, by simply changing the measuring function in order to get the wanted invariance. Moreover, size functions show properties of relative resistance to noise, depending on the fact that they distribute the information all over the half-plane .

Main properties

Assume that is a compact locally connected Hausdorff space. The following statements hold:

If we also assume that is a smooth closed manifold and is a -function, the following useful property holds:

A strong link between the concept of size function and the concept of natural pseudodistance between the size pairs exists. [1] [19]

The previous result gives an easy way to get lower bounds for the natural pseudodistance and is one of the main motivation to introduce the concept of size function.

Representation by formal series

An algebraic representation of size functions in terms of collections of points and lines in the real plane with multiplicities, i.e. as particular formal series, was furnished in [1] [20] . [21] The points (called cornerpoints) and lines (called cornerlines) of such formal series encode the information about discontinuities of the corresponding size functions, while their multiplicities contain the information about the values taken by the size function.

Formally:

is positive. The number is said to be the multiplicity of .
The number is sad to be the multiplicity of .
.

This representation contains the same amount of information about the shape under study as the original size function does, but is much more concise.

This algebraic approach to size functions leads to the definition of new similarity measures between shapes, by translating the problem of comparing size functions into the problem of comparing formal series. The most studied among these metrics between size function is the matching distance. [3]

Related Research Articles

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

<span class="mw-page-title-main">Homeomorphism</span> Mapping which preserves all topological properties of a given space

In mathematics and more specifically in topology, a homeomorphism, also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. A list of the spherical harmonics is available in Table of spherical harmonics.

In mathematics, a linear form is a linear map from a vector space to its field of scalars.

<span class="mw-page-title-main">Foliation</span> In mathematics, a type of equivalence relation on an n-manifold

In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = np is called its codimension.

In mathematics, particularly in algebraic topology, Alexander–Spanier cohomology is a cohomology theory for topological spaces.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

<span class="mw-page-title-main">Mixing (mathematics)</span> Mathematical description of mixing substances

In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: e.g. mixing paint, mixing drinks, industrial mixing.

In mathematics, in particular in algebraic topology, the Hopf invariant is a homotopy invariant of certain maps between n-spheres.

In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates, assumed to be (smooth) functions . There are two kinds: the regular solid harmonics, which are well-defined at the origin and the irregular solid harmonics, which are singular at the origin. Both sets of functions play an important role in potential theory, and are obtained by rescaling spherical harmonics appropriately:

In the mathematical subject of geometric group theory, the Culler–Vogtmann Outer space or just Outer space of a free group Fn is a topological space consisting of the so-called "marked metric graph structures" of volume 1 on Fn. The Outer space, denoted Xn or CVn, comes equipped with a natural action of the group of outer automorphisms Out(Fn) of Fn. The Outer space was introduced in a 1986 paper of Marc Culler and Karen Vogtmann, and it serves as a free group analog of the Teichmüller space of a hyperbolic surface. Outer space is used to study homology and cohomology groups of Out(Fn) and to obtain information about algebraic, geometric and dynamical properties of Out(Fn), of its subgroups and individual outer automorphisms of Fn. The space Xn can also be thought of as the set of Fn-equivariant isometry types of minimal free discrete isometric actions of Fn on Fn on R-treesT such that the quotient metric graph T/Fn has volume 1.

In size theory, the natural pseudodistance between two size pairs , is the value , where varies in the set of all homeomorphisms from the manifold to the manifold and is the supremum norm. If and are not homeomorphic, then the natural pseudodistance is defined to be . It is usually assumed that , are closed manifolds and the measuring functions are . Put another way, the natural pseudodistance measures the infimum of the change of the measuring function induced by the homeomorphisms from to .

The concept of size homotopy group is analogous in size theory of the classical concept of homotopy group. In order to give its definition, let us assume that a size pair is given, where is a closed manifold of class and is a continuous function. Consider the lexicographical order on defined by setting if and only if . For every set .

In mathematics, the matching distance is a metric on the space of size functions.

In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging. TDA provides a general framework to analyze such data in a manner that is insensitive to the particular metric chosen and provides dimensionality reduction and robustness to noise. Beyond this, it inherits functoriality, a fundamental concept of modern mathematics, from its topological nature, which allows it to adapt to new mathematical tools.

In mathematics, size theory studies the properties of topological spaces endowed with -valued functions, with respect to the change of these functions. More formally, the subject of size theory is the study of the natural pseudodistance between size pairs. A survey of size theory can be found in .

For computer science, in statistical learning theory, a representer theorem is any of several related results stating that a minimizer of a regularized empirical risk functional defined over a reproducing kernel Hilbert space can be represented as a finite linear combination of kernel products evaluated on the input points in the training set data.

In machine learning, the kernel embedding of distributions comprises a class of nonparametric methods in which a probability distribution is represented as an element of a reproducing kernel Hilbert space (RKHS). A generalization of the individual data-point feature mapping done in classical kernel methods, the embedding of distributions into infinite-dimensional feature spaces can preserve all of the statistical features of arbitrary distributions, while allowing one to compare and manipulate distributions using Hilbert space operations such as inner products, distances, projections, linear transformations, and spectral analysis. This learning framework is very general and can be applied to distributions over any space on which a sensible kernel function may be defined. For example, various kernels have been proposed for learning from data which are: vectors in , discrete classes/categories, strings, graphs/networks, images, time series, manifolds, dynamical systems, and other structured objects. The theory behind kernel embeddings of distributions has been primarily developed by Alex Smola, Le Song , Arthur Gretton, and Bernhard Schölkopf. A review of recent works on kernel embedding of distributions can be found in.

In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.

In set theory and logic, Buchholz's ID hierarchy is a hierarchy of subsystems of first-order arithmetic. The systems/theories are referred to as "the formal theories of ν-times iterated inductive definitions". IDν extends PA by ν iterated least fixed points of monotone operators.

References

  1. 1 2 3 Patrizio Frosini and Claudia Landi, Size Theory as a Topological Tool for Computer Vision, Pattern Recognition And Image Analysis, 9(4):596–603, 1999.
  2. 1 2 Patrizio Frosini and Michele Mulazzani, Size homotopy groups for computation of natural size distances, Bulletin of the Belgian Mathematical Society, 6:455–464 1999.
  3. 1 2 3 Michele d'Amico, Patrizio Frosini and Claudia Landi, Using matching distance in Size Theory: a survey, International Journal of Imaging Systems and Technology, 16(5):154–161, 2006.
  4. Silvia Biasotti, Andrea Cerri, Patrizio Frosini, Claudia Landi, Multidimensional size functions for shape comparison, Journal of Mathematical Imaging and Vision 32:161–179, 2008.
  5. Silvia Biasotti, Leila De Floriani, Bianca Falcidieno, Patrizio Frosini, Daniela Giorgi, Claudia Landi, Laura Papaleo, Michela Spagnuolo, Describing shapes by geometrical-topological properties of real functions ACM Computing Surveys, vol. 40 (2008), n. 4, 12:1–12:87.
  6. Patrizio Frosini, A distance for similarity classes of submanifolds of a Euclidean space , Bulletin of the Australian Mathematical Society, 42(3):407–416, 1990.
  7. Patrizio Frosini, Measuring shapes by size functions, Proc. SPIE, Intelligent Robots and Computer Vision X: Algorithms and Techniques, Boston, MA, 1607:122–133, 1991.
  8. Francesca Cagliari, Massimo Ferri and Paola Pozzi, Size functions from a categorical viewpoint, Acta Applicandae Mathematicae, 67(3):225–235, 2001.
  9. Herbert Edelsbrunner, David Letscher and Afra Zomorodian, Topological Persistence and Simplification, Discrete and Computational Geometry, 28(4):511–533, 2002.
  10. Claudio Uras and Alessandro Verri, Describing and recognising shape through size functions ICSI Technical Report TR-92-057, Berkeley, 1992.
  11. Alessandro Verri, Claudio Uras, Patrizio Frosini and Massimo Ferri, On the use of size functions for shape analysis, Biological Cybernetics, 70:99–107, 1993.
  12. Patrizio Frosini and Claudia Landi, Size functions and morphological transformations, Acta Applicandae Mathematicae, 49(1):85–104, 1997.
  13. Alessandro Verri and Claudio Uras, Metric-topological approach to shape representation and recognition, Image Vision Comput., 14:189–207, 1996.
  14. Alessandro Verri and Claudio Uras, Computing size functions from edge maps, Internat. J. Comput. Vision, 23(2):169–183, 1997.
  15. Françoise Dibos, Patrizio Frosini and Denis Pasquignon, The use of size functions for comparison of shapes through differential invariants, Journal of Mathematical Imaging and Vision, 21(2):107–118, 2004.
  16. Andrea Cerri, Massimo Ferri, Daniela Giorgi, Retrieval of trademark images by means of size functions Graphical Models 68:451–471, 2006.
  17. Silvia Biasotti, Daniela Giorgi, Michela Spagnuolo, Bianca Falcidieno, Size functions for comparing 3D models Pattern Recognition 41:2855–2873, 2008.
  18. Patrizio Frosini, Connections between size functions and critical points, Mathematical Methods in the Applied Sciences, 19:555–569, 1996.
  19. Pietro Donatini and Patrizio Frosini, Lower bounds for natural pseudodistances via size functions, Archives of Inequalities and Applications, 2(1):1–12, 2004.
  20. Claudia Landi and Patrizio Frosini, New pseudodistances for the size function space, Proc. SPIE Vol. 3168, pp. 52–60, Vision Geometry VI, Robert A. Melter, Angela Y. Wu, Longin J. Latecki (eds.), 1997.
  21. Patrizio Frosini and Claudia Landi, Size functions and formal series, Appl. Algebra Engrg. Comm. Comput., 12:327–349, 2001.

See also