Smart system

Last updated

Smart systems are systems(usually computer systems or electronic system) which are able to incorporate and perform functions of sensing , actuation, and control in order to analyze a situation, based on acquired data and perform decisions in a predictive or adaptive manner , thereby performing smart actions. In most cases the Intelligence/"smartness" of the system can be attributed to autonomous operation based on closed loop control, resource management, and networking capabilities.

Contents

Characteristics

Smart systems typically consist of diverse components:

Development

A lot of smart systems evolved from microsystems. They combine technologies and components from microsystems technology (miniaturized electric, mechanical, optical, and fluidic devices) with other disciplines like biology, chemistry, nanoscience, or cognitive sciences.

There are three generations of smart systems:

Challenges

A major challenge in smart systems technology is the integration of a multitude of diverse components, developed and produced in very different technologies and materials. Focus is on the design and manufacturing of completely new marketable products and services for specialized applications (e.g., in medical technologies), and for mass market applications (e.g., in the automotive industries).

In an industrial context, and when emphasizing the combination of components with the aim of merging their functional and technical abilities into an interoperable system, the term "smart systems integration" is used. This term reflects the industrial requirement and particular challenge of integrating different technologies, component sizes, and materials into one system.

The systems approach calls for integrated design and manufacturing and has to bring together interdisciplinary technological approaches and solutions (converging technologies). Manufacturing companies as well as research institutes therefore face challenges in terms of specialized technological knowhow, skilled labor, design tools, and equipment needed for the research, design and manufacturing of integrated smart systems.

Applications area for smart systems

Smart systems address environmental, societal, and economic challenges like limited resources, climate change, population ageing, and globalization. They are for that reason increasingly used in a large number of sectors. Key sectors in this context are transportation, healthcare, energy, safety and security, logistics, ICT, and manufacturing.

Environment

In terms of environmental challenges, smart solutions for energy management and distribution, smart control of electrical drives, smart logistics, or energy-efficient facility management could, by 2020, reduce global emissions by 23%, with an equivalent of 9.2 Gt CO2e.

Automotive sector

In the automotive sector, smart systems integration will be a key enabler for pre-crash systems and predictive driver assistance features to reach the goal of the Road Safety Action Plan to halve the number of traffic deaths by 2020. Furthermore, smart systems are considered fundamental for sustainable and energy-efficient mobility, e.g., hybrid and electric traction.

Internet of Things

Smart systems also considerably contribute to the development of the future Internet of Things, in that they provide smart functionality to everyday objects, e.g., to industrial goods in the supply chain, or to food products in the food supply chain. With the help of active RFID technology, wireless sensors, real-time sense and response capability, energy efficiency, as well as networking functionality, objects will become smart objects. These smart objects could support the elderly and the disabled. The close tracking and monitoring of food products could improve food supply and quality. Smart industrial goods could store information about their origin, destination, components, and use. And waste disposal could become a truly efficient individual recycling process.

Armatix developed a pistol that uses an RFID-active wristwatch to function.

Healthcare

In the healthcare sector, smart systems technology leads to better diagnostic tools, to better treatment and quality of life for patients by simultaneously reducing costs of public healthcare systems. Key developments in this sector are smart miniaturized devices and artificial organs like artificial pancreas or cochlear implants.

For example, Lab-on-a-chip devices have biochemical sensors that detect specific molecular markers in body fluids or tissue. They can include multiple functionalities such as sample taking, sample preparation, and sample pre-treatment, data processing, and storage, implantable systems which can be reabsorbed by the body after use, non-invasive sensors based on transdermal principles, or devices for responsive administration of medication. In healthcare, smart systems often operate autonomously and within networks, because those systems are able to provide real-time monitoring, diagnosis, interaction with other devices, and communication with the patient or physician.

See also

Related Research Articles

<span class="mw-page-title-main">Biomedical engineering</span> Application of engineering principles and design concepts to medicine and biology

Biomedical engineering (BME) or medical engineering is the application of engineering principles and design concepts to medicine and biology for healthcare purposes. BME is also traditionally logical sciences to advance health care treatment, including diagnosis, monitoring, and therapy. Also included under the scope of a biomedical engineer is the management of current medical equipment in hospitals while adhering to relevant industry standards. This involves procurement, routine testing, preventive maintenance, and making equipment recommendations, a role also known as a Biomedical Equipment Technician (BMET) or as a clinical engineer.

<span class="mw-page-title-main">MEMS</span> Very small devices that incorporate moving components

MEMS is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size, and MEMS devices generally range in size from 20 micrometres to a millimetre, although components arranged in arrays can be more than 1000 mm2. They usually consist of a central unit that processes data and several components that interact with the surroundings.

Nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and analyzed. There are several ways proposed today to make nanosensors; these include top-down lithography, bottom-up assembly, and molecular self-assembly. There are different types of nanosensors in the market and in development for various applications, most notably in defense, environmental, and healthcare industries. These sensors share the same basic workflow: a selective binding of an analyte, signal generation from the interaction of the nanosensor with the bio-element, and processing of the signal into useful metrics.

A lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on a single integrated circuit of only millimeters to a few square centimeters to achieve automation and high-throughput screening. LOCs can handle extremely small fluid volumes down to less than pico-liters. Lab-on-a-chip devices are a subset of microelectromechanical systems (MEMS) devices and sometimes called "micro total analysis systems" (µTAS). LOCs may use microfluidics, the physics, manipulation and study of minute amounts of fluids. However, strictly regarded "lab-on-a-chip" indicates generally the scaling of single or multiple lab processes down to chip-format, whereas "µTAS" is dedicated to the integration of the total sequence of lab processes to perform chemical analysis.

Soitec is an international company based in France, that manufactures substrates used in the creation of semiconductors.

Intelligent Environments (IE) are spaces with embedded systems and information and communication technologies creating interactive spaces that bring computation into the physical world and enhance occupants experiences. "Intelligent environments are spaces in which computation is seamlessly used to enhance ordinary activity. One of the driving forces behind the emerging interest in highly interactive environments is to make computers not only genuine user-friendly but also essentially invisible to the user".

The Internet of things (IoT) describes devices with sensors, processing ability, software and other technologies that connect and exchange data with other devices and systems over the Internet or other communications networks. The Internet of things encompasses electronics, communication and computer science engineering. Internet of things has been considered a misnomer because devices do not need to be connected to the public internet, they only need to be connected to a network, and be individually addressable.

The European Technology Platform on Smart Systems Integration (EPoSS) is a collaborative initiative under the European Seventh Framework Programme, dedicated to enhancing the European Union's position in Smart Systems Technologies and integrated Micro and Nanosystems. Established as a Public-Private Partnership between the European Commission and various industry players, EPoSS aims to define research and development (R&D) needs and policy requirements in these cutting-edge fields.

<span class="mw-page-title-main">Micropump</span>

Micropumps are devices that can control and manipulate small fluid volumes. Although any kind of small pump is often referred to as a micropump, a more accurate definition restricts this term to pumps with functional dimensions in the micrometer range. Such pumps are of special interest in microfluidic research, and have become available for industrial product integration in recent years. Their miniaturized overall size, potential cost and improved dosing accuracy compared to existing miniature pumps fuel the growing interest for this innovative kind of pump.

A cyber–physicalsystem (CPS) or intelligent system is a computer system in which a mechanism is controlled or monitored by computer-based algorithms. In cyber–physical systems, physical and software components are deeply intertwined, able to operate on different spatial and temporal scales, exhibit multiple and distinct behavioral modalities, and interact with each other in ways that change with context. CPS involves transdisciplinary approaches, merging theory of cybernetics, mechatronics, design and process science. The process control is often referred to as embedded systems. In embedded systems, the emphasis tends to be more on the computational elements, and less on an intense link between the computational and physical elements. CPS is also similar to the Internet of Things (IoT), sharing the same basic architecture; nevertheless, CPS presents a higher combination and coordination between physical and computational elements.

The nanomorphic cell is a conception of an atomic-level, integrated, self-sustaining microsystem with five main functions: internal energy supply, sensing, actuation, computation and communication. Atomic level integration provides the ultimate functionality per unit volume for microsystems. The nanomorphic cell abstraction allows one to analyze the fundamental limits of attainable performance for nanoscale systems in much the same way that the Turing Machine and the Carnot Engine support such limit studies for information processing and heat engines respectively.

Dust Networks, Inc. is an American company specializing in the design and manufacture of wireless sensor networks for industrial applications including process monitoring, condition monitoring, asset management, Environment, Health and Safety (EHS) monitoring and power management. They were acquired by Linear Technology, Inc in December 2011, which in turn was acquired by Analog Devices, Inc in 2017. The Dust Networks product team operates in the IoT Networking Platforms group of Analog Devices.

<span class="mw-page-title-main">Thick-film technology</span>

Thick-film technology is used to produce electronic devices/modules such as surface mount devices modules, hybrid integrated circuits, heating elements, integrated passive devices and sensors. Main manufacturing technique is screen printing (stenciling), which in addition to use in manufacturing electronic devices can also be used for various graphic reproduction targets. It became one of the key manufacturing/miniaturisation techniques of electronic devices/modules during 1950s. Typical film thickness – manufactured with thick film manufacturing processes for electronic devices – is 0.0001 to 0.1 mm.

<span class="mw-page-title-main">CEA-Leti: Laboratoire d'électronique des technologies de l'information</span>

CEA-Leti is a research institute for electronics and information technologies, based in Grenoble, France. It is one of the world's largest organizations for applied research in microelectronics and nanotechnology.

Embedded intelligence is characterized as the ability of a product, process, or service to reflect on its own operational performance, usage load, or environment. The motivation for this may be to enhance the performance, lifetime, or quality of the product. This self-reflection might be facilitated by information collected via embedded sensors, and processed locally or communicated remotely for processing.

A digital twin is a digital model of an intended or actual real-world physical product, system, or process that serves as the effectively indistinguishable digital counterpart of it for practical purposes, such as simulation, integration, testing, monitoring, and maintenance. The digital twin has been intended from its initial introduction to be the underlying premise for Product Lifecycle Management and exists throughout the entire lifecycle of the physical entity it represents. Since information is granular, the digital twin representation is determined by the value-based use cases it is created to implement. The digital twin can and does often exist before there is a physical entity. The use of a digital twin in the creation phase allows the intended entity's entire lifecycle to be modeled and simulated. A digital twin of an existing entity may be used in real-time and regularly synchronized with the corresponding physical system.

The industrial internet of things (IIoT) refers to interconnected sensors, instruments, and other devices networked together with computers' industrial applications, including manufacturing and energy management. This connectivity allows for data collection, exchange, and analysis, potentially facilitating improvements in productivity and efficiency as well as other economic benefits. The IIoT is an evolution of a distributed control system (DCS) that allows for a higher degree of automation by using cloud computing to refine and optimize the process controls.

Luc Van den hove is President and Chief Executive Officer (CEO) of IMEC, Europe's largest independent research center in the field of nanoelectronics and digital technologies.

The Digital twin integration level refers to the different degrees of data and information flow that may occur between the physical part and the digital copy of a digital twin. According to the different levels of integration, the digital twin can be divided into three subcategories: Digital Model (DM), Digital Shadow (DS) and Digital Twin (DT).

References