Soft SUSY breaking

Last updated

In theoretical physics, soft SUSY breaking is type of supersymmetry breaking that does not cause ultraviolet divergences to appear in scalar masses.

Contents

Overview

These terms are relevant operators—i.e. operators whose coefficients have a positive dimension of mass—though there are some exceptions.

A model with soft SUSY breaking was proposed in 1981 by Howard Georgi and Savas Dimopoulos. [1] Before this, dynamical models of supersymmetry breaking were being used that suffered from giving rise to color and charge breaking vacua.

Soft SUSY breaking decouples the origin of supersymmetry breaking from its phenomenological consequences. In effect, soft SUSY breaking adds explicit symmetry breaking to the supersymmetric Standard Model Lagrangian. The source of SUSY breaking results from a different sector where supersymmetry is broken spontaneously. Divorcing the spontaneous supersymmetry breaking from the supersymmetric Standard Model leads to the notion of mediated supersymmetry breaking.

Example operators

Nonholomorphic soft supersymmetry breaking interactions

In low energy supersymmetry based models, the soft supersymmetry breaking interactions excepting the mass terms are usually considered to be holomorphic functions of fields. While a superpotential such as that of MSSM needs to be holomorphic, there is no reason why soft supersymmetry breaking interactions are required to be holomorphic functions of fields. [2] Of course, an arbitrary nonholomorphic interaction may invite an appearance of quadratic divergence (or hard supersymmetry breaking); however, there are scenarios with no gauge singlet fields where nonholomorphic interactions can as well be of soft supersymmetry breaking type. [3] One may consider a hidden sector based supersymmetry breaking, with and to be chiral superfields. Then, there exist nonholomorphic -term contributions of the forms that are soft supersymmetry breaking in nature. The above lead to nonholomorphic trilinear soft terms like and an explicit Higgsino soft mass term like in the Lagrangian. The coefficients of both and terms are proportional to , where is the vacuum expectation value of the auxiliary field components of and is the scale of mediation of supersymmetry breaking. Away from MSSM, there can be higgsino-gaugino interactions like that are also nonholomorphic in nature.

Related Research Articles

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework combining classical field theory, special relativity, and quantum mechanics

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field, which is a valid approximation for several applications. The irrotationality of a potential flow is due to the curl of the gradient of a scalar always being equal to zero.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation . Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction the practical utility is limited.

R-parity is a concept in particle physics. In the Minimal Supersymmetric Standard Model, baryon number and lepton number are no longer conserved by all of the renormalizable couplings in the theory. Since baryon number and lepton number conservation have been tested very precisely, these couplings need to be very small in order not to be in conflict with experimental data. R-parity is a symmetry acting on the Minimal Supersymmetric Standard Model (MSSM) fields that forbids these couplings and can be defined as

<span class="mw-page-title-main">Minimal Supersymmetric Standard Model</span> Simplest supersymmetric extension to the Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory. The failure to find evidence for MSSM using the Large Hadron Collider has strengthened an inclination to abandon it.

<span class="mw-page-title-main">Higgs mechanism</span> Mechanism that explains the generation of mass for gauge bosons

In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature. The view of the Higgs mechanism as involving spontaneous symmetry breaking of a gauge symmetry is technically incorrect since by Elitzur's theorem gauge symmetries can never be spontaneously broken. Rather, the Fröhlich–Morchio–Strocchi mechanism reformulates the Higgs mechanism in an entirely gauge invariant way, generally leading to the same results.

In theoretical physics, a supermultiplet is a representation of a supersymmetry algebra, possibly with extended supersymmetry.

In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki Yukawa, is an interaction between particles according to the Yukawa potential. Specifically, it is a scalar field ϕ and a Dirac field ψ of the type

In particle physics, the doublet–triplet (splitting) problem is a problem of some Grand Unified Theories, such as SU(5), SO(10), and . Grand unified theories predict Higgs bosons arise from representations of the unified group that contain other states, in particular, states that are triplets of color. The primary problem with these color triplet Higgs is that they can mediate proton decay in supersymmetric theories that are only suppressed by two powers of GUT scale. In addition to mediating proton decay, they alter gauge coupling unification. The doublet–triplet problem is the question 'what keeps the doublets light while the triplets are heavy?'

In theoretical physics, Q-ball is a type of non-topological soliton. A soliton is a localized field configuration that is stable—it cannot spread out and dissipate. In the case of a non-topological soliton, the stability is guaranteed by a conserved charge: the soliton has lower energy per unit charge than any other configuration.

<span class="mw-page-title-main">Mathematical formulation of the Standard Model</span> Mathematics of a particle physics model

This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.

In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory.

<span class="mw-page-title-main">Split supersymmetry</span> Particle physics theory

In particle physics, split supersymmetry is a proposal for physics beyond the Standard Model.

In theoretical physics, Seiberg–Witten theory is an supersymmetric gauge theory with an exact low-energy effective action, of which the kinetic part coincides with the Kähler potential of the moduli space of vacua. Before taking the low-energy effective action, the theory is known as supersymmetric Yang–Mills theory, as the field content is a single vector supermultiplet, analogous to the field content of Yang–Mills theory being a single vector gauge field or connection.

In physics, naturalness is the aesthetic property that the dimensionless ratios between free parameters or physical constants appearing in a physical theory should take values "of order 1" and that free parameters are not fine-tuned. That is, a natural theory would have parameter ratios with values like 2.34 rather than 234000 or 0.000234.

In theoretical physics, the μ problem is a problem of supersymmetric theories, concerned with understanding the parameters of the theory.

In quantum field theory, a non-topological soliton (NTS) is a soliton field configuration possessing, contrary to a topological one, a conserved Noether charge and stable against transformation into usual particles of this field for the following reason. For fixed charge Q, the mass sum of Q free particles exceeds the energy (mass) of the NTS so that the latter is energetically favorable to exist.

<span class="mw-page-title-main">Gauge theory</span> Physical theory with fields invariant under the action of local "gauge" Lie groups

In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, do not change under local transformations according to certain smooth families of operations. Formally, the Lagrangian is invariant.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics.

References

  1. Howard Georgi and Savas Dimopoulos (1981). "Softly Broken Supersymmetry and SU(5)". Nuclear Physics. B193 (1): 150–162. Bibcode:1981NuPhB.193..150D. doi:10.1016/0550-3213(81)90522-8. hdl: 2027.42/24165 .
  2. L. Girardello and M. T. Grisaru (1982). "Soft Breaking of Supersymmetry". Nuclear Physics. B194: 65–76. doi:10.1016/0550-3213(82)90512-0.
  3. S.P. Martin (2000). "Dimensionless supersymmetry breaking couplings, flat directions, and the origin of intermediate mass scales". Phys. Rev. D. 61 (3): 035004. arXiv: hep-ph/9907550 . doi:10.1103/PhysRevD.61.035004. S2CID   14239091.