Solution in radicals

Last updated

A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of nth roots (square roots, cube roots, etc.).

A well-known example is the quadratic formula

which expresses the solutions of the quadratic equation

There exist algebraic solutions for cubic equations [1] and quartic equations, [2] which are more complicated than the quadratic formula. The Abel–Ruffini theorem, [3] :211 and, more generally Galois theory, state that some quintic equations, such as

do not have any algebraic solution. The same is true for every higher degree. However, for any degree there are some polynomial equations that have algebraic solutions; for example, the equation can be solved as The eight other solutions are nonreal complex numbers, which are also algebraic and have the form where r is a fifth root of unity, which can be expressed with two nested square roots. See also Quintic function § Other solvable quintics for various other examples in degree 5.

Évariste Galois introduced a criterion allowing one to decide which equations are solvable in radicals. See Radical extension for the precise formulation of his result.

See also

Related Research Articles

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

In mathematics, a quadratic equation is an equation that can be rearranged in standard form as where the variable x represents an unknown number, and a, b, and c represent known numbers, where a ≠ 0. The numbers a, b, and c are the coefficients of the equation and may be distinguished by respectively calling them, the quadratic coefficient, the linear coefficient and the constant coefficient or free term.

<span class="mw-page-title-main">Quadratic formula</span> Formula that provides the solutions to a quadratic equation

In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation. Other ways of solving quadratic equations, such as completing the square, yield the same solutions.

<span class="mw-page-title-main">Galois theory</span> Mathematical connection between field theory and group theory

In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand.

In mathematics, the Abel–Ruffini theorem states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, general means that the coefficients of the equation are viewed and manipulated as indeterminates.

<span class="mw-page-title-main">Root of unity</span> Number that has an integer power equal to 1

In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform.

<span class="mw-page-title-main">Cubic equation</span> Polynomial equation of degree 3

In algebra, a cubic equation in one variable is an equation of the form in which a is not zero.

<span class="mw-page-title-main">Quartic equation</span> Polynomial equation of degree 4

In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is

<span class="mw-page-title-main">Quintic function</span> Polynomial function of degree 5

In mathematics, a quintic function is a function of the form

<span class="mw-page-title-main">Quartic function</span> Polynomial function of degree 4

In algebra, a quartic function is a function of the form

In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and

In algebra, the theory of equations is the study of algebraic equations, which are equations defined by a polynomial. The main problem of the theory of equations was to know when an algebraic equation has an algebraic solution. This problem was completely solved in 1830 by Évariste Galois, by introducing what is now called Galois theory.

In mathematics, an expression or equation is in closed form if it is formed with constants, variables and a finite set of basic functions connected by arithmetic operations and function composition. Commonly, the allowed functions are nth root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context.

In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are:

<span class="mw-page-title-main">Bring radical</span> Real root of the polynomial x^5+x+a

In algebra, the Bring radical or ultraradical of a real number a is the unique real root of the polynomial

<span class="mw-page-title-main">Sextic equation</span> Polynomial equation of degree 6

In algebra, a sexticpolynomial is a polynomial of degree six. A sextic equation is a polynomial equation of degree six—that is, an equation whose left hand side is a sextic polynomial and whose right hand side is zero. More precisely, it has the form:

In algebra, casus irreducibilis is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically, i.e., by obtaining roots that are expressed with radicals. It shows that many algebraic numbers are real-valued but cannot be expressed in radicals without introducing complex numbers. The most notable occurrence of casus irreducibilis is in the case of cubic polynomials that have three real roots, which was proven by Pierre Wantzel in 1843. One can see whether a given cubic polynomial is in the so-called casus irreducibilis by looking at the discriminant, via Cardano's formula.

<span class="mw-page-title-main">Septic equation</span> Polynomial equation of degree 7

In algebra, a septic equation is an equation of the form

<span class="mw-page-title-main">Resolvent cubic</span> Cubic polynomials defined from a monic polynomial of degree four

In algebra, a resolvent cubic is one of several distinct, although related, cubic polynomials defined from a monic polynomial of degree four:

In Galois theory, a discipline within the field of abstract algebra, a resolvent for a permutation group G is a polynomial whose coefficients depend polynomially on the coefficients of a given polynomial p and has, roughly speaking, a rational root if and only if the Galois group of p is included in G. More exactly, if the Galois group is included in G, then the resolvent has a rational root, and the converse is true if the rational root is a simple root. Resolvents were introduced by Joseph Louis Lagrange and systematically used by Évariste Galois. Nowadays they are still a fundamental tool to compute Galois groups. The simplest examples of resolvents are

References

  1. Nickalls, R. W. D., "A new approach to solving the cubic: Cardano's solution revealed," Mathematical Gazette 77, November 1993, 354-359.
  2. Carpenter, William, "On the solution of the real quartic," Mathematics Magazine 39, 1966, 28-30.
  3. Jacobson, Nathan (2009), Basic Algebra 1 (2nd ed.), Dover, ISBN   978-0-486-47189-1