Sound speed profile

Last updated

A sound speed profile shows the speed of sound in water at different vertical levels. It has two general representations:

  1. tabular form, with pairs of columns corresponding to ocean depth and the speed of sound at that depth, respectively.
  2. a plot of the speed of sound in the ocean as a function of depth, where the vertical axis corresponds to the depth and the horizontal axis corresponds to the sound speed. By convention, the horizontal axis is placed at the top of the plot, and the vertical axis is labeled with values which increase from top to bottom, thus reproducing visually the ocean from its surface downward.

Table 1 [1] shows an example of the first representation; figure 1 shows the same information using the second representation.

Table 1. A sound speed profile in tabular form.
Depth (m)Sound speed (m/s)Depth (m)Sound speed (m/s)
01540.45001517.2
101540.56001518.2
201540.77001519.5
301534.48001521.0
501523.39001522.6
751519.610001524.1
1001518.511001525.7
1251517.912001527.3
1501517.313001529.0
2001516.614001530.7
2501516.515001532.4
3001516.217501536.7
4001516.420001541.0
Figure 1. Table 1's data in graphical format. Sound speed profile plotted using the data in table 1 on the Sound Speed Profile page.png
Figure 1. Table 1's data in graphical format.

Although given as a function of depth [note 1] , the speed of sound in the ocean does not depend solely on depth. Rather, for a given depth, the speed of sound depends on the temperature at that depth, the depth itself, and the salinity at that depth, in that order. [3]

The speed of sound in the ocean at different depths can be measured directly, e.g., by using a velocimeter, or, using measurements of temperature and salinity at different depths, it can be calculated using a number of different sound speed formulae which have been developed. Examples of such formulae include those by Wilson, [4] Chen and Millero [5] and Mackenzie. [6] Each such formulation applies within specific limits of the independent variables. [7]

From the shape of the sound speed profile in figure 1, one can see the effect of the order of importance of temperature and depth on sound speed. Near the surface, where temperatures are generally highest, the sound speed is often highest because the effect of temperature on sound speed dominates. Further down the water column, as temperature decreases in the ocean thermocline, sound speed also decreases. At a certain point, however, the effect of depth, i.e., pressure, begins to dominate, and the sound speed increases to the ocean floor. [8] Also visible in figure 1 is a common feature in sound speed profiles: the SOFAR channel. The axis of this channel is found at the depth of minimum sound speed. Sounds emitted at or near the axis of this channel propagate for very long horizontal distances, owing to the refraction of the sound back to the channel's center. [2]

Sound speed profile data are a necessary component of underwater acoustic propagation models, especially those based on ray tracing theory.

Notes

  1. Technically, depth isn't the physical variable which influences the sound speed. Rather, it is pressure. However, given the near linear relationship between the two, [2] depth is used more often when presenting sound speed profiles.

Related Research Articles

Speed of sound Speed of sound wave through elastic medium

The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 metres per second, or one kilometre in 2.9 s or one mile in 4.7 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating. At 0 °C (32 °F), the speed of sound is about 331 m/s.

Echo sounding Measuring the depth of water by transmitting sound waves into water and timing the return

Echo sounding or depth sounding is the use of sonar for ranging, normally to determine the depth of water (bathymetry). It involves transmitting acoustic waves into water and recording the time interval between emission and return of a pulse; the resulting time of flight, along with knowledge of the speed of sound in water, allows determining the distance between sonar and target. This information is then typically used for navigation purposes or in order to obtain depths for charting purposes.

The mesopelagiczone, also known as the middle pelagic or twilight zone, is the part of the pelagic zone that lies between the photic epipelagic and the aphotic bathypelagic zones. It is defined by light, and begins at the depth where only 1% of incident light reaches and ends where there is no light; the depths of this zone are between approximately 200 to 1,000 meters below the ocean surface.

Thermocline Distinct layer in a large body of fluid in which temperature changes more rapidly with depth than it does in the layers above or below

A thermocline is a thin but distinct layer in a large body of fluid in which temperature changes more drastically with depth than it does in the layers above or below. In the ocean, the thermocline divides the upper mixed layer from the calm deep water below.

Surface layer Layer of a turbulent fluid most affected by interaction with a solid surface or the surface separating a gas and a liquid where the characteristics of the turbulence depend on distance from the interface

The surface layer is the layer of a turbulent fluid most affected by interaction with a solid surface or the surface separating a gas and a liquid where the characteristics of the turbulence depend on distance from the interface. Surface layers are characterized by large normal gradients of tangential velocity and large concentration gradients of any substances transported to or from the interface.

SOFAR channel Horizontal layer of water in the ocean at which depth the speed of sound is at its minimum

The SOFAR channel, or deep sound channel (DSC), is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating. An example was reception of coded signals generated by the Navy chartered ocean surveillance vessel Cory Chouest off Heard Island, located in the southern Indian Ocean, by hydrophones in portions of all five major ocean basins and as distant as the North Atlantic and North Pacific.

Pycnocline Layer where the density gradient is greatest within a body of water

A pycnocline is the cline or layer where the density gradient is greatest within a body of water. An ocean current is generated by the forces such as breaking waves, temperature and salinity differences, wind, Coriolis effect, and tides caused by the gravitational pull of celestial bodies. In addition, the physical properties in a pycnocline driven by density gradients also affect the flows and vertical profiles in the ocean. These changes can be connected to the transport of heat, salt, and nutrients through the ocean, and the pycnocline diffusion controls upwelling.

Underwater acoustics Study of the propagation of sound in water and the interaction of sound waves with the water and its boundaries

Underwater acoustics is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries. The water may be in the ocean, a lake, a river or a tank. Typical frequencies associated with underwater acoustics are between 10 Hz and 1 MHz. The propagation of sound in the ocean at frequencies lower than 10 Hz is usually not possible without penetrating deep into the seabed, whereas frequencies above 1 MHz are rarely used because they are absorbed very quickly. Underwater acoustics is sometimes known as hydroacoustics.

In acoustics, the sound speed gradient is the rate of change of the speed of sound with distance, for example with depth in the ocean, or height in the Earth's atmosphere. A sound speed gradient leads to refraction of sound wavefronts in the direction of lower sound speed, causing the sound rays to follow a curved path. The radius of curvature of the sound path is inversely proportional to the gradient.

Ocean heat content Thermal energy stored in ocean water

In oceanography and climatology, ocean heat content (OHC) is a term for the energy absorbed by the ocean, where it is stored for indefinite time periods as internal energy or enthalpy. The rise in OHC accounts for over 90% of Earth's excess thermal energy from global heating since year 1970. About one third of the added energy has propagated to depths below 700 meters as of 2020.

Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean, and deep ocean.

RAFOS floats are submersible devices used to map ocean currents well below the surface. They drift with these deep currents and listen for acoustic "pongs" emitted at designated times from multiple moored sound sources. By analyzing the time required for each pong to reach a float, researchers can pinpoint its position by triangulation. The floats are able to detect the pongs at ranges of hundreds of kilometers because they generally target a range of depths known as the SOFAR channel, which acts as a waveguide for sound. The name "RAFOS" derives from the earlier SOFAR floats, which emitted sounds that moored receivers picked up, allowing real-time underwater tracking. When the transmit and receive roles were reversed, so was the name: RAFOS is SOFAR spelled backward. Listening for sound requires far less energy than transmitting it, so RAFOS floats are cheaper and longer lasting than their predecessors, but they do not provide information in real-time: instead they store it on board, and upon completing their mission, drop a weight, rise to the surface, and transmit the data to shore by satellite.

CTD (instrument) Device to measure seawater properties

For information about the CTD-rosette equipment package as a whole, see: Rosette sampler

The SOLO-TREC is a profiling float that uses a novel thermal recharging engine powered by the natural temperature differences found at different ocean depths to cycle up and down in the ocean. The research and prototype were developed by researchers at the Jet Propulsion Laboratory in Pasadena, CA, and the Scripps Institution of Oceanography in San Diego, CA. The project name stands for "Sounding Oceanographic Lagrangrian Observer Thermal RECharging" vehicle.

In oceanography, a front is a boundary between two distinct water masses. The formation of fronts depends on multiple physical processes and small differences in these lead to a wide range of front types. They can be as narrow as a few hundreds of metres and as wide as several tens of kilometres. While most fronts form and dissipate relatively quickly, some can persist for long periods of time.

Temperature–salinity diagram Diagrams used to identify water masses

In oceanography, temperature-salinity diagrams, sometimes called T-S diagrams, are used to identify water masses. In a T-S diagram, rather than plotting each water property as a separate "profile," with pressure or depth as the vertical coordinate, potential temperature is plotted versus salinity. As long as it remains isolated from the surface, where heat or fresh water can be gained or lost, and in the absence of mixing with other water masses, a water parcel's potential temperature and salinity are conserved. Deep water masses thus retain their T-S characteristics for long periods of time, and can be identified readily on a T-S plot.

Float (oceanographic instrument platform) Oceanographic instrument platform used for making subsurface measurements in the ocean

A float is an oceanographic instrument platform used for making subsurface measurements in the ocean without the need for a ship, propeller, or a person operating it. Floats measure the physical and chemical aspects of the ocean in detail, such as measuring the direction and speed of water or the temperature and salinity. A float will descend to a predetermined depth where it will be neutrally buoyant. Once a certain amount of time has passed, most floats will rise back to the surface by increasing its buoyancy so it can transmit the data it collected to a satellite. A float can collect data while it is neutrally buoyant or moving through the water column. Often, floats are treated as disposable, as the expense of recovering them from remote areas of the ocean is prohibitive; when the batteries fail, a float ceases to function, and drifts at depth until it runs aground or floods and sinks. In other cases, floats are deployed for a short time and recovered.

Global Drifter Program Program measuring ocean currents, temperatures and atmospheric pressure using drifters

The Global Drifter Program (GDP) was conceived by Prof. Peter Niiler, with the objective of collecting measurements of surface ocean currents, sea surface temperature and sea-level atmospheric pressure using drifters. It is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observations and a scientific project of the Data Buoy Cooperation Panel (DBCP). The project originated in February 1979 as part of the TOGA/Equatorial Pacific Ocean Circulation Experiment (EPOCS) and the first large-scale deployment of drifters was in 1988 with the goal of mapping the tropical Pacific Ocean's surface circulation. The current goal of the project is to use 1250 satellite-tracked surface drifting buoys to make accurate and globally dense in-situ observations of mixed layer currents, sea surface temperature, atmospheric pressure, winds and salinity, and to create a system to process the data. Horizontal transports in the oceanic mixed layer measured by the GDP are relevant to biological and chemical processes as well as physical ones.

TEOS-10 is the international standard for the use and calculation of the thermodynamic properties of seawater, humid air and ice. It supersedes the former standard EOS-80. TEOS-10 is used by oceanographers and climate scientists to calculate and model properties of the oceans in an internationally comparable way.

Seismic oceanography is a form of acoustic oceanography, in which sound waves are used to study the physical properties and dynamics of the ocean. It provides images of changes in the temperature and salinity of seawater. Unlike most oceanographic acoustic imaging methods, which use sound waves with frequencies greater than 10,000 Hz, seismic oceanography uses sound waves with frequencies lower than 500 Hz. Use of low-frequency sound means that seismic oceanography is unique in its ability to provide highly detailed images of oceanographic structure that span horizontal distances of hundreds of kilometres and which extend from the sea surface to the seabed. Since its inception in 2003, seismic oceanography has been used to image a wide variety of oceanographic phenomena, including fronts, eddies, thermohaline staircases, turbid layers and cold methane seeps. In addition to providing spectacular images, seismic oceanographic data have given quantitative insight into processes such as movement of internal waves and turbulent mixing of seawater.

References

  1. John J. Audet, Jr. & Gregory G. Vega, (1974) AESD Sound-Speed Profile Retrieval System (RSVP), AESD Technical Note TN-74-03, 14.
  2. 1 2 Caruthers, Jerald W. (1977) Fundamentals of Marine Acoustics. Amsterdam: Elsevier Scientific Publishing Company.
  3. Stewart, Robert H. (2008) Introduction to Physical Oceanography. College Station: Texas A&M University.
  4. Wilson, W.D. (1960) Equation for the speed of sound in sea water. J. Acoust. Soc. Amer., 32, 1357.
  5. Chen, C.-T. and Millero, F.J. (1977) Speed of sound in seawater at high pressures. J. Acoust. Soc. Amer., 62, 1129-35.
  6. Mackenzie, K.V. (1981) Nine-term equation for sound speed in the oceans. J. Acoust. Soc. Amer., 70, 807-12.
  7. Etter, Paul C. (1996) Underwater Acoustic Modeling: Principles, techniques and applications. Cambridge: University Press.
  8. Talley, L.D et al. (2011) Descriptive Physical Oceanography: An Introduction. Academic Press.