A source measure unit (SMU) is a type of electronic test equipment which, as the name indicates, is capable of both sourcing and measuring at the same time.
The source measure unit (SMU), or source-measurement unit as it is sometimes called, is an electronic instrument that is capable of both sourcing and measuring at the same time. It can precisely force voltage or current and simultaneously measure precise voltage and/or current.
SMUs are used for test applications requiring high accuracy, high resolution and measurement flexibility. Such applications include I-V characterizing and testing semiconductors and other non-linear devices and materials, where sourcing voltage and current source span across both positive and negative values. To accomplish this, SMUs have four-quadrant outputs. [1] For characterization purposes SMUs are bench instruments similar to a curve tracer. They are also commonly used in automatic test equipment and usually are equipped with an interface such as GPIB or USB to enable connection to a computer.
Semiconductor characterization led to the development of source measure units. The HP4145A semiconductor parameter analyzer introduced in 1982 was capable of a complete DC characterization of semiconductor devices and materials. [2] It consisted of four independently controlled source monitor units (the precursor to source measure units) enclosed in a mainframe.
The Keithley 236 introduced in 1989 was the first stand-alone SMU and allowed system builders to integrate one or more SMUs with a separate PC control. Over time stand-alone SMUs have evolved to offer a broader range of current, voltage, power level and price points for applications beyond semiconductor characterization. Smaller form factors made possible through the use of modern computing technologies have allowed system builders to integrate SMUs into rack and stack systems for larger scale production test applications. [3]
A SMU integrates a highly stable DC power source, as a constant current source or as a constant voltage source, and a high precision multimeter.
It typically has four terminals, two for source and measurement and two more for kelvin, or remote sense, connection. Power is simultaneously sourced (positive) or sinked (negative) to a pair of terminals at the same time as measuring the current or voltage across those terminals is done. [4]
A power supply is mainly intended to provide appropriate power for a particular application. Due to this, the majority of power-supplies are one-quadrant (source only, with fixed polarity), and in most cases constant-voltage operation. Bench power supplies might add constant-current operation as well as providing limited measurement capabilities, but these are in many cases still one-quadrant only and with margins of errors acceptable for coarse lab-work.
Some high-end lab power-supplies will have two- or four-quadrant operation (source and sink, with fixed or dual polarity), which is an essential feature of a SMU. However, many of these still have a main focus on providing power to an application, where eventual measurement capabilities has secondary priority. These may have advanced capabilities of controlling the power output, but might lack things like specialized test-modes or monitoring-options tailored for precise and easy power-characterization. This particular class of power-supplies can be regarded as the predecessor for the SMU, where the SMU differs in that it adds features particularly aimed towards characterization.
The built-in sourcing capabilities of an SMU work with the instrument’s measurement capabilities to reduce measurement uncertainty and support low current and more flexible resistance measurements. In voltage measurements system-level leakage can be suppressed more easily than with separate instruments. In current measurements, the SMU’s design reduces voltage burden. For resistance measurements, SMUs provide programmable source values, useful for protecting the device being tested.
Notable features of SMUs include the following:
An ammeter is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit in which the current is to be measured. An ammeter usually has low resistance so that it does not cause a significant voltage drop in the circuit being measured.
A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit.
An electrometer is an electrical instrument for measuring electric charge or electrical potential difference. There are many different types, ranging from historical handmade mechanical instruments to high-precision electronic devices. Modern electrometers based on vacuum tube or solid-state technology can be used to make voltage and charge measurements with very low leakage currents, down to 1 femtoampere. A simpler but related instrument, the electroscope, works on similar principles but only indicates the relative magnitudes of voltages or charges.
An ohmmeter is an electrical instrument that measures electrical resistance. Multimeters also function as ohmmeters when in resistance-measuring mode. An ohmmeter applies current to the circuit or component whose resistance is to be measured. It then measures the resulting voltage and calculates the resistance using Ohm’s law .
A multimeter is a measuring instrument that can measure multiple electrical properties. A typical multimeter can measure voltage, resistance, and current, in which case it is also known as a volt-ohm-milliammeter (VOM), as the unit is equipped with voltmeter, ammeter, and ohmmeter functionality, or volt-ohmmeter for short. Some feature the measurement of additional properties such as temperature and capacitance.
In electrical engineering, the power factor of an AC power system is defined as the ratio of the real power absorbed by the load to the apparent power flowing in the circuit. Real power is the average of the instantaneous product of voltage and current and represents the capacity of the electricity for performing work. Apparent power is the product of RMS current and voltage. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the apparent power may be greater than the real power, so more current flows in the circuit than would be required to transfer real power alone. A power factor magnitude of less than one indicates the voltage and current are not in phase, reducing the average product of the two. A negative power factor occurs when the device generates real power, which then flows back towards the source.
Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. The electric current flows in a constant direction, distinguishing it from alternating current (AC). A term formerly used for this type of current was galvanic current.
A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a result, power supplies are sometimes referred to as electric power converters. Some power supplies are separate standalone pieces of equipment, while others are built into the load appliances that they power. Examples of the latter include power supplies found in desktop computers and consumer electronics devices. Other functions that power supplies may perform include limiting the current drawn by the load to safe levels, shutting off the current in the event of an electrical fault, power conditioning to prevent electronic noise or voltage surges on the input from reaching the load, power-factor correction, and storing energy so it can continue to power the load in the event of a temporary interruption in the source power.
Electronic test equipment is used to create signals and capture responses from electronic devices under test (DUTs). In this way, the proper operation of the DUT can be proven or faults in the device can be traced. Use of electronic test equipment is essential to any serious work on electronics systems.
In electronics, an analog multiplier is a device that takes two analog signals and produces an output which is their product. Such circuits can be used to implement related functions such as squares, and square roots.
In electrical signalling an analog current loop is used where a device must be monitored or controlled remotely over a pair of conductors. Only one current level can be present at any time.
Automatic test equipment or automated test equipment (ATE) is any apparatus that performs tests on a device, known as the device under test (DUT), equipment under test (EUT) or unit under test (UUT), using automation to quickly perform measurements and evaluate the test results. An ATE can be a simple computer-controlled digital multimeter, or a complicated system containing dozens of complex test instruments capable of automatically testing and diagnosing faults in sophisticated electronic packaged parts or on wafer testing, including system on chips and integrated circuits.
A semiconductor curve tracer is a specialised piece of electronic test equipment used to analyze the characteristics of discrete semiconductor devices such as diodes, transistors, and thyristors. Based on an oscilloscope, the device also contains voltage and current sources that can be used to stimulate the device under test (DUT).
An optical power meter (OPM) is a device used to measure the power in an optical signal. The term usually refers to a device for testing average power in fiber optic systems. Other general purpose light power measuring devices are usually called radiometers, photometers, laser power meters, light meters or lux meters.
A tube tester is an electronic instrument designed to test certain characteristics of vacuum tubes. Tube testers evolved along with the vacuum tube to satisfy the demands of the time, and their evolution ended with the tube era. The first tube testers were simple units designed for specific tubes to be used in the battlefields of World War I by radio operators, so they could easily test the tubes of their communication equipment.
An ESR meter is a two-terminal electronic measuring instrument designed and used primarily to measure the equivalent series resistance (ESR) of real capacitors; usually without the need to disconnect the capacitor from the circuit it is connected to. Other types of meters used for routine servicing, including normal capacitance meters, cannot be used to measure a capacitor's ESR, although combined meters are available which measure both ESR and out-of-circuit capacitance. A standard (DC) milliohmmeter or multimeter cannot be used to measure ESR, because a steady direct current cannot be passed through the capacitor. Most ESR meters can also be used to measure non-inductive low-value resistances, whether or not associated with a capacitor; this leads to a number of additional applications described below.
A measuring instrument is a device to measure a physical quantity. In the physical sciences, quality assurance, and engineering, measurement is the activity of obtaining and comparing physical quantities of real-world objects and events. Established standard objects and events are used as units, and the process of measurement gives a number relating the item under study and the referenced unit of measurement. Measuring instruments, and formal test methods which define the instrument's use, are the means by which these relations of numbers are obtained. All measuring instruments are subject to varying degrees of instrument error and measurement uncertainty. These instruments may range from simple objects such as rulers and stopwatches to electron microscopes and particle accelerators. Virtual instrumentation is widely used in the development of modern measuring instruments.
Keithley Instruments is a measurement and instrument company headquartered in Solon, Ohio, that develops, manufactures, markets, and sells data acquisition products, as well as complete systems for high-volume production and assembly testing.
This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.