The Space Launch Initiative (SLI) was a NASA and U.S. Department of Defense joint research and technology project to determine the requirements to meet all the nation's hypersonics, space launch and space technology needs. It was also known as the "2nd Generation Reusable Launch Vehicle (RLV) program.". [1] The program began with the award of RLV study contracts in 2000. [1]
The primary goal of the research was to increase safety and reliability and to reduce overall costs associated with building, flying and maintaining the nation's next generation of space launch vehicles. NASA anticipated that these advances would revitalize the nation's space transportation capabilities, and dramatically improve NASA's ability to conduct science and exploration missions in space. [2] This program was evolved into the Orbital Space Plane Program and the Next Generation Launch Technology program in November 2002. [3]
In 2004 NASA moved on to the Constellation Program, part of the Vision for Space Exploration, after the Columbia disaster.
"Co-optimized Booster for Reusable Applications". [4] : 139
The RS-83 was a rocket engine design for a reusable LH2/LOX rocket larger and more powerful than any other. The RS-83 was developed by Rocketdyne Propulsion and Power in Canoga Park, California to power the launch vehicle as part of the Space Launch Initiative program. This engine was designed to produce a thrust of 664,000 lbf (2,950 kN) at sea level and 750,000 lbf (3,300 kN) in a vacuum with an Isp of 395 and 446 seconds (3.87 and 4.37 kN·s/kg), respectively. [4] : 139
The RS-83 is loosely based on the RS-68 that powers the Delta IV expendable launch vehicle. The RS-83 design is more efficient, lighter, slightly stronger, and yet reusable. The RS-83 was designed to last 100 missions, and was intended for use on the first stage of a two-stage-to-orbit reusable launch vehicle.
As part of the Space Launch Initiative, Rocketdyne developed a plan for the RS-84 rocket engine. It would have been the first reusable, staged combustion cycle, liquid rocket engine produced by the US to use a hydrocarbon fuel. [5] In contrast, the Soviet Union developed the RD-170 reusable staged combustion hydrocarbon engine for the Energia rocket in the 1980s.
The prototype engine would have 4,732 kN (1,064,000 lbf) at sea level; 5,026 kN (1,130,000 lbf) in vacuum; an 8-shift turn time; a specific impulse of 305 at sea level and 324 in vacuum. [4] : 141
NASA cancelled further development in 2005. [6]
The TR-106 or Low Cost Pintle Engine (LCPE) was a developmental LH2/LOX rocket engine designed by TRW under the Space Launch Initiative. It had a planned sea-level thrust of 650,000 lbf. [4] : 144 It was tested at NASA John C. Stennis Space Center throughout 2000. The Stennis test stand results demonstrated that the engine was stable over a wide variety of thrust levels and propellant ratios. [7] Development of the engine was temporarily discontinued with the cancellation of the Space Launch Initiative. [7]
Since 2000, TRW has been acquired by Northrop Grumman and development of the TR-107 RP-1/LOX rocket engine began in 2001 for potential use on next-generation launch and space transportation vehicles is continuing under contract to NASA. [8] [9]
Technology lessons[ clarification needed ] from the Low Cost Pintle Engine project assisted subcontractor development of engines by SpaceX.[ citation needed ] Tom Mueller was a lead engineer on the LCPE project, and later designed the Merlin engine for SpaceX.
The Air Force Reusable Booster System program initiated in 2010, and cancelled in 2012, was hoped to renew interest in further development of these engines. [10] [ needs update ]
The aerospike engine is a type of rocket engine that maintains its aerodynamic efficiency across a wide range of altitudes. It belongs to the class of altitude compensating nozzle engines. Aerospike engines were proposed for many single-stage-to-orbit (SSTO) designs. They were a contender for the Space Shuttle main engine. However, as of 2023 no such engine was in commercial production, although some large-scale aerospikes were in testing phases.
Big Dumb Booster (BDB) is a general class of launch vehicle based on the premise that it is cheaper to operate large rockets of simple design than it is to operate smaller, more complex ones regardless of the lower payload efficiency. As referred to by the Office of Technology Assessment:
The term Big Dumb Booster has been applied to a wide variety of concepts for low-cost launch vehicles, especially those that would use "low technology" approaches to engines and propellant tanks in the booster stage. As used here, it refers to the criterion of designing launch systems for minimum cost by using simplified subsystems where appropriate.
Rocketdyne is an American rocket engine design and production company headquartered in Canoga Park, in the western San Fernando Valley of suburban Los Angeles, in southern California.
The Delta rocket family was a versatile range of American rocket-powered expendable launch systems that provided space launch capability in the United States from 1960 to 2024. Japan also launched license-built derivatives from 1975 to 1992. More than 300 Delta rockets were launched with a 95% success rate. The series was phased out in favor of the Vulcan Centaur, with the Delta IV Heavy rocket's last launch occurring on April 9, 2024.
The Lockheed Martin X-33 was a proposed uncrewed, sub-scale technology demonstrator suborbital spaceplane that was developed for a period in the 1990s. The X-33 was a technology demonstrator for the VentureStar orbital spaceplane, which was planned to be a next-generation, commercially operated reusable launch vehicle. The X-33 would flight-test a range of technologies that NASA believed it needed for single-stage-to-orbit reusable launch vehicles, such as metallic thermal protection systems, composite cryogenic fuel tanks for liquid hydrogen, the aerospike engine, autonomous (uncrewed) flight control, rapid flight turn-around times through streamlined operations, and its lifting body aerodynamics.
The J-2, commonly known as Rocketdyne J-2, was a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the United States by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.
Merlin is a family of rocket engines developed by SpaceX. They are currently a part of the Falcon 9 and Falcon Heavy launch vehicles, and were formerly used on the Falcon 1. Merlin engines use RP-1 and liquid oxygen as rocket propellants in a gas-generator power cycle. The Merlin engine was originally designed for sea recovery and reuse, but since 2016 the entire Falcon 9 booster is recovered for reuse by landing vertically on a landing pad using one of its nine Merlin engines.
Aerojet Rocketdyne is a subsidiary of American defense company L3Harris that manufactures rocket, hypersonic, and electric propulsive systems for space, defense, civil and commercial applications. Aerojet traces its origins to the General Tire and Rubber Company established in 1915, while Rocketdyne was created as a division of North American Aviation in 1955. Aerojet Rocketdyne was formed in 2013 when Aerojet and Pratt & Whitney Rocketdyne were merged, following the latter's acquisition by GenCorp, Inc. from Pratt & Whitney. Aerojet Rocketdyne was acquired by L3Harris in July 2023 for $4.7 billion.
The RS-68 (Rocket System-68) was a liquid-fuel rocket engine that used liquid hydrogen (LH2) and liquid oxygen (LOX) as propellants in a gas-generator cycle. It was the largest hydrogen-fueled rocket engine ever flown.
The RS-83 was a rocket engine design for a reusable liquid hydrogen/liquid oxygen rocket larger and more powerful than any other. The RS-83 was designed to last 100 missions, and was intended for use on the first stage of a two-stage-to-orbit reusable launch vehicle.
The pintle injector is a type of propellant injector for a bipropellant rocket engine. Like any other injector, its purpose is to ensure appropriate flow rate and intermixing of the propellants as they are forcibly injected under high pressure into the combustion chamber, so that an efficient and controlled combustion process can happen.
Douglas Aircraft's SASSTO, short for "Saturn Application Single Stage to Orbit", was a single-stage-to-orbit (SSTO) reusable launch system designed by Philip Bono's team in 1967. SASSTO was a study in minimalist designs, a launcher with the specific intent of repeatedly placing a Gemini capsule in orbit for the lowest possible cost. The SASSTO booster was based on the layout of the S-IVB upper stage from the Saturn family, modified with a plug nozzle. Although the SASSTO design was never followed up at Douglas, it is widely referred to in newer studies for SSTO launchers, notably the MBB "Beta" design, which was largely an updated version of SASSTO.
Fastrac was a turbo pump-fed, liquid rocket engine. The engine was designed by NASA as part of the low cost X-34 Reusable Launch Vehicle (RLV) and as part of the Low Cost Booster Technology project. This engine was later known as the MC-1 engine when it was merged into the X-34 project.
The TR-106 or low-cost pintle engine (LCPE) was a developmental rocket engine designed by TRW under the Space Launch Initiative to reduce the cost of launch services and space flight. Operating on LOX/LH2 the engine had a thrust of 2892 kN, or 650,000 pounds, making it one of the most powerful engines ever constructed.
The Reusable Booster System (RBS) was a United States Air Force research program, circa 2010 to 2012, to develop a new prototype vertical-takeoff, horizontal-landing (VTHL) reusable booster and a new prototype expendable second stage to replace the existing Evolved Expendable Launch Vehicles (EELV) after 2025. The program was discontinued in 2012.
Pratt & Whitney Rocketdyne (PWR) was an American company that designed and produced rocket engines that use liquid propellants. It was a division of Pratt & Whitney, a fully owned subsidiary of United Technologies Corporation. It was headquartered in Canoga Park, Los Angeles, California. In 2013, the company was sold to GenCorp,Inc., becoming part of Aerojet Rocketdyne.
The RS-88 is a liquid-fueled rocket engine designed and built in the United States by Rocketdyne. Originally developed for NASA's Bantam System Technology program in 1997, the RS-88 burned ethanol fuel with liquid oxygen (LOX) as the oxidizer. It offered 220 kN (49,000 lbf) of thrust at sea level.
The TR-107 was a developmental rocket engine designed in 2002 by Northrop Grumman for the NASA and DoD-funded Space Launch Initiative (SLI). Operating on LOX/RP-1, the engine was throttleable and had a thrust of 4,900 kN (1,100,000 lbf) at a chamber pressure of 17.7 megapascals (177 bar), making it one of the most powerful engines ever constructed.
Raptor is a family of rocket engines developed and manufactured by SpaceX. It is the third rocket engine in history designed with a full-flow staged combustion (FFSC) fuel cycle, and the first such engine to power a vehicle in flight. The engine is powered by cryogenic liquid methane and liquid oxygen, a mixture known as methalox.
The MARC-60, also known as MB-60, MB-XX, and RS-73, is a liquid-fuel cryogenic rocket engine designed as a collaborative effort by Japan's Mitsubishi Heavy Industries and US' Aerojet Rocketdyne. The engine burns cryogenic liquid oxygen and liquid hydrogen in an open expander cycle, driving the turbopumps with waste heat from the main combustion process.