Specific appetite

Last updated

Specific appetite, also known as specific hunger, is a drive to eat foods with specific flavors or other characteristics. [1]

Contents

Regulation of homeostasis is essential to the survival of animals. Because the nutritional content of a diet will vary with environmental and other conditions, it is useful for animals to have a mechanism to ensure that their nutritional needs are within the appropriate range. Specific appetite is one such mechanism. Specific appetite has been demonstrated in various species for a number of vitamins and minerals, as well as calories, protein, and water. Unfortunately, specific appetite is very difficult to study experimentally, as there are a number of factors that influence food choice. Very little is known about the specific mechanisms inducing specific appetite, and the genes encoding for specific appetites are mostly speculative.

Very few specific appetites for particular nutrients have been identified in humans. The most robustly identified are salt appetite/sodium appetite. The problem with many other nutrients is that they do not have distinctly identifiable tastes, and only two other specific appetites, for iron and calcium, have been identified with experimental rigour so far. Other appetites are thus currently classified as learned appetites, which are not innate appetites that are triggered automatically in the absence of certain nutrients, but learned behaviours, aversions to or preferences for certain foods as they become associated with experiences of malnutrition and illness. [1]

Learned appetite

If a food source has an identifiable flavor, an animal can learn to associate the positive effects of alleviation of a certain nutrient deficiency with consumption of that food. This has been demonstrated in a variety of species: lambs offered free choice of various foods will compensate for phosphorus, sodium, and calcium deficiencies. [2] Domestic fowl have demonstrated specific appetites for calcium, zinc, and phosphorus, thiamine, protein in general, and methionine and lysine. Heat-stressed fowls seek out vitamin C, which alleviates the consequences of heat stress [3] Learned specific appetites are not necessarily a result of an animal's ability to detect the presence of a nutrient. Because nutrient deficiencies of various types can have stressful effects which vary depending on the missing nutrient, subsequent ingestion of that nutrient is associated with relief of certain signs. An animal may therefore associate the flavor of a food that is high in a certain nutrient with relief of the signs of that nutrient deficiency, while not seeking out other foods rich in the same nutrient.

Unlearned appetite

An unlearned appetite is one that an animal possesses at birth, without conditioning through prior stress followed by alleviation with specific foods. An unlearned appetite suggests a physiological mechanism for detecting the absence of a nutrient as well as a signalling component that directs the animal to seek out the missing nutrient. An example of an unlearned appetite might be caloric appetite, as seen in all domestic animals. Other unlearned appetites are more difficult to demonstrate. In one study, protein-deficient rats that had not previously experienced protein deficiency demonstrated strong preferences for high-protein foods such as soybean, gluten, and ovalbumin within thirty minutes of food presentation. This preference was not seen in controls, and was also exhibited by pregnant females with higher protein needs who were not experimentally protein-deficient. [4] Rats also seem to have an unlearned appetite for calcium and sodium. [5] In addition, zinc-depleted chicks show preferences for zinc-rich feeds. [6]

Indirect manipulation of specific appetite

Specific appetite can be indirectly induced under experimental circumstances. In one study, normal (sodium-replete) rats exposed to angiotensin II via infusion directly into the brain developed a strong sodium appetite which persisted for months. [7] However, the conclusions of this experiment have been contested. [8] Nicotine implants in rats have been shown to induce a specific appetite for sucrose, even after removal of the implants. [9]

Specific appetite in humans

There is very little strong evidence for specific appetite in humans. However, it has been demonstrated that humans have the ability to taste calcium, [10] and indirect evidence supports the idea that patients on kidney dialysis who develop hypocalcemia prefer cheese with greater amounts of calcium added. [11] Exercise also increases the preference for salt. [12] Some diseases, including Gitelman syndrome and the salt-wasting variant of Congenital adrenal hyperplasia, impair the kidney's ability to retain sodium in the body and cause a specific craving for sodium. [13] Extreme sodium depletion in human volunteers has been demonstrated to increase the desire for high-salt foods. [14]

Ongoing research

While the most common nutritional disorders in humans concern excessive intake of calories, malnutrition remains a problem. For example, the link between insufficient dietary calcium and bone disorders is well established [15]

Commonly people have an appetite for meat or eggs, high protein foods. But these may be expensive or otherwise unavailable. A specific appetite for protein may be unsatisfied with the ingestion of a diet deficient in protein. But protein is vitally important to maintaining the structures of the body’s systems, so the specific appetite leads to more eating, in a desperate attempt to satiate the specific appetite for protein in life.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Nutrition</span> Provision to cells and organisms to support life

Nutrition is the biochemical and physiological process by which an organism uses food to support its life. It provides organisms with nutrients, which can be metabolized to create energy and chemical structures. Failure to obtain sufficient nutrients causes malnutrition. Nutritional science is the study of nutrition, though it typically emphasizes human nutrition.

<span class="mw-page-title-main">Vitamin K</span> Fat-soluble vitamers

Vitamin K is a family of structurally similar, fat-soluble vitamers found in foods and marketed as dietary supplements. The human body requires vitamin K for post-synthesis modification of certain proteins that are required for blood coagulation or for controlling binding of calcium in bones and other tissues. The complete synthesis involves final modification of these so-called "Gla proteins" by the enzyme gamma-glutamyl carboxylase that uses vitamin K as a cofactor.

<span class="mw-page-title-main">Pantothenic acid</span> Chemical compound

Pantothenic acid (vitamin B5) is a B vitamin and an essential nutrient. All animals need pantothenic acid in order to synthesize coenzyme A (CoA)—essential for metabolizing fatty acid—and to synthesize and metabolize proteins, carbohydrates, and fats.

A nutrient is a substance used by an organism to survive, grow, and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi, and protists. Nutrients can be incorporated into cells for metabolic purposes or excreted by cells to create non-cellular structures, such as hair, scales, feathers, or exoskeletons. Some nutrients can be metabolically converted to smaller molecules in the process of releasing energy, such as for carbohydrates, lipids, proteins, and fermentation products, leading to end-products of water and carbon dioxide. All organisms require water. Essential nutrients for animals are the energy sources, some of the amino acids that are combined to create proteins, a subset of fatty acids, vitamins and certain minerals. Plants require more diverse minerals absorbed through roots, plus carbon dioxide and oxygen absorbed through leaves. Fungi live on dead or living organic matter and meet nutrient needs from their host.

<span class="mw-page-title-main">Human nutrition</span> Provision of essential nutrients necessary to support human life and health

Human nutrition deals with the provision of essential nutrients in food that are necessary to support human life and good health. Poor nutrition is a chronic problem often linked to poverty, food security, or a poor understanding of nutritional requirements. Malnutrition and its consequences are large contributors to deaths, physical deformities, and disabilities worldwide. Good nutrition is necessary for children to grow physically and mentally, and for normal human biological development.

<span class="mw-page-title-main">Mineral (nutrient)</span> Chemical element required as an essential nutrient by organisms to perform life functions

In the context of nutrition, a mineral is a chemical element. Some "minerals" are essential for life, most are not. Minerals are one of the four groups of essential nutrients, the others of which are vitamins, essential fatty acids, and essential amino acids. The five major minerals in the human body are calcium, phosphorus, potassium, sodium, and magnesium. The remaining elements are called "trace elements". The generally accepted trace elements are iron, chlorine, cobalt, copper, zinc, manganese, molybdenum, iodine, and selenium; there is some evidence that there may be more.

<span class="mw-page-title-main">Malabsorption</span> Medical condition

Malabsorption is a state arising from abnormality in absorption of food nutrients across the gastrointestinal (GI) tract. Impairment can be of single or multiple nutrients depending on the abnormality. This may lead to malnutrition and a variety of anaemias.

<span class="mw-page-title-main">Vegetarian nutrition</span> Nutritional and human health aspects of vegetarian diets

Vegetarian nutrition is the set of health-related challenges and advantages of vegetarian diets.

<span class="mw-page-title-main">Cat food</span> Food for consumption by cats

Cat food is food specifically designed for consumption by cats. As obligate carnivores, cats have specific requirements for their dietary nutrients, namely nutrients found only in meat, such as taurine, arginine, and Vitamin B6. Certain nutrients, including many vitamins and amino acids, are degraded by the temperatures, pressures and chemical treatments used during manufacture, and hence must be added after manufacture to avoid nutritional deficiency.

Micronutrients are essential dietary elements required by organisms in varying quantities to regulate physiological functions of cells and organs. Micronutrients support the health of organisms throughout life.

<span class="mw-page-title-main">Osteophagy</span> Consumption of bones

Osteophagy is the practice in which animals, usually herbivores, consume bones. Most vegetation around the world lacks sufficient amounts of phosphate. Phosphorus is an essential mineral for all animals, as it plays a major role in the formation of the skeletal system, and is necessary for many biological processes including: energy metabolism, protein synthesis, cell signaling, and lactation. Phosphate deficiencies can cause physiological side effects, especially pertaining to the reproductive system, as well as side effects of delayed growth and failure to regenerate new bone. The importance of having sufficient amounts of phosphorus further resides in the physiological importance of maintaining a proper phosphorus to calcium ratio. Having a Ca:P ratio of 2:1 is important for the absorption of these minerals, as deviations from this optimal ratio can inhibit their absorption. Dietary calcium and phosphorus ratio, along with vitamin D, regulates bone mineralization and turnover by affecting calcium and phosphorus transport and absorption in the intestine.

Zinc deficiency is defined either as insufficient zinc to meet the needs of the body, or as a serum zinc level below the normal range. However, since a decrease in the serum concentration is only detectable after long-term or severe depletion, serum zinc is not a reliable biomarker for zinc status. Common symptoms include increased rates of diarrhea. Zinc deficiency affects the skin and gastrointestinal tract; brain and central nervous system, immune, skeletal, and reproductive systems.

Jejunoileal bypass (JIB) was a surgical weight-loss procedure performed for the relief of morbid obesity from the 1950s through the 1970s in which all but 30 cm (12 in) to 45 cm (18 in) of the small bowel were detached and set to the side.

<span class="mw-page-title-main">Antinutrient</span> Compound that affects the absorption of nutrients

Antinutrients are natural or synthetic compounds that interfere with the absorption of nutrients. Nutrition studies focus on antinutrients commonly found in food sources and beverages. Antinutrients may take the form of drugs, chemicals that naturally occur in food sources, proteins, or overconsumption of nutrients themselves. Antinutrients may act by binding to vitamins and minerals, preventing their uptake, or inhibiting enzymes.

Animal nutrition focuses on the dietary nutrients needs of animals, primarily those in agriculture and food production, but also in zoos, aquariums, and wildlife management.

<span class="mw-page-title-main">Nutritional neuroscience</span> Scientific discipline

Nutritional neuroscience is the scientific discipline that studies the effects various components of the diet such as minerals, vitamins, protein, carbohydrates, fats, dietary supplements, synthetic hormones, and food additives have on neurochemistry, neurobiology, behavior, and cognition.

David Booth works full-time in research and research teaching as an honorary professor at the School of Psychology in the College of Life and Environmental Sciences of the University of Birmingham (UK). According to his Web page he investigates the ways in which an individual's life works. His research and teaching centre on the processes in the mind that fit acts and reactions of human beings and animals to the passing situation.

<span class="mw-page-title-main">Vegan nutrition</span> Nutritional and human health aspects of vegan diets

Vegan nutrition refers to the nutritional and human health aspects of vegan diets. A well-planned, balanced vegan diet is suitable to meet all recommendations for nutrients in every stage of human life. Vegan diets tend to be higher in dietary fiber, magnesium, folic acid, vitamin C, vitamin E, iron, and phytochemicals; and lower in calories, saturated fat, cholesterol, long-chain omega-3 fatty acids, vitamin D, calcium, zinc, and vitamin B12.

<span class="mw-page-title-main">Vegetarian and vegan dog diet</span> Adequate meat-free or animal-free nutrition

As in the human practice of veganism, vegan dog foods are those formulated with the exclusion of ingredients that contain or were processed with any part of an animal, or any animal byproduct. Vegan dog food may incorporate the use of fruits, vegetables, cereals, legumes including soya, nuts, vegetable oils, as well as any other non-animal based foods.

References

  1. 1 2 Kent C. Berridge (2001). "malnutrition". In Philip Winn (ed.). Dictionary of Biological Psychology. CRC Press. pp. 957–958. ISBN   978-0-203-29884-8.
  2. Villalba, Provenza, Hall, Learned appetites for calcium, phosphorus, and sodium in sheep. Journal of Animal Science, 2008.86:738-747
  3. Sahin, Sahin, Onderci, Gursu, Issi, 2002: Effects of vitamin C and vitamin E on lipid peroxidation status, serum hormone, metabolite, and mineral concentrations of Japanese quails reared under heat stress (34 degrees C), International Journal for Vitamin and Nutrition Research
  4. J.A. Deutsh, Unlearned specific appetite for protein. Physiology and Behavior, 1989; 46(4):619-624
  5. Tordoff MG. Voluntary intake of calcium and other minerals by rats. American Journal of Physiology. 1994 Aug;267(2 Pt 2):R470-5.
  6. Hughes, Dewar. A specific appetite for zinc in zinc-depleted domestic fowls. British poultry Science, 1971
  7. Bryant, Epstein, Fitzsimons, and Fluharty. Arousal of a specific and persistent sodium appetite in the rat with continuous intracerebroventricular infusion of angiotensin II.
  8. Rohla, Gaal, Kiss, and Kocsis, Intracerebroventricular antiotensin II injection does not elicit specific appetite for sodium in the rat. Acta Physiol Acad Sci Hung, 1981; 58(3):169-80
  9. Jias and Ellison, Chronic nicotine induces a specific appetite for sucrose in rats. Pharmacology Biochemistry and Behavior, 1990:35(2) 489-491
  10. Schiffman SS, Erickson RP. A psychophysical model for gustatory quality. Physiol Behav. 1971 Oct;7(4):617-33.
  11. Weaver and Heaney, Calcium in Human Health. Springer, 2006, 169
  12. Lesham, Abutbul and Eilon, Exercise Increases the Preference for Salt in Humans. Appetite, 1999; 32(2): 251-260
  13. Kochli, Tenenbaum-Rakover, Leshem. Increased salt appetite in patients with CAH-21-OH deficiency (congenital adrenal hyperplasia). Am J Physiol Regul Inegr Comp Physiol, Jan 13 2005
  14. Beauchamp, Bertino, Burke and Engelman. Experimental sodium depletion and salt taste in normal human volunteers. American Journal of Clinical Nutrition, 1990; 51:881-889
  15. Cumming, Calcium intake and bone mass: a quantitative review of the evidence. Calcified Tissue International, 2007; 47(4): 194-201

Further reading