Spectral gap (physics)

Last updated

In quantum mechanics, the spectral gap of a system is the energy difference between its ground state and its first excited state. [1] [2] The mass gap is the spectral gap between the vacuum and the lightest particle. A Hamiltonian with a spectral gap is called a gapped Hamiltonian, and those that do not are called gapless.

In solid-state physics, the most important spectral gap is for the many-body system of electrons in a solid material, in which case it is often known as an energy gap.

In quantum many-body systems, ground states of gapped Hamiltonians have exponential decay of correlations. [3] [4] [5]

In 2015, it was shown that the problem of determining the existence of a spectral gap is undecidable in two or more dimensions. [6] [7] The authors used an aperiodic tiling of quantum Turing machines and showed that this hypothetical material becomes gapped if and only if the machine halts. [8] The one-dimensional case was also proven undecidable in 2020 by constructing a chain of interacting qudits divided into blocks that gain energy if and only if they represent a full computation by a Turing machine, and showing that this system becomes gapped if and only if the machine does not halt. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Quantum computing</span> Technology that uses quantum mechanics

A quantum computer is a computer that exploits quantum mechanical phenomena. At small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior using specialized hardware. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster than any modern "classical" computer. In particular, a large-scale quantum computer could break widely used encryption schemes and aid physicists in performing physical simulations; however, the current state of the art is still largely experimental and impractical.

In quantum computing, a quantum algorithm is an algorithm which runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer. Although all classical algorithms can also be performed on a quantum computer, the term quantum algorithm is usually used for those algorithms which seem inherently quantum, or use some essential feature of quantum computation such as quantum superposition or quantum entanglement.

The Yang–Mills existence and mass gap problem is an unsolved problem in mathematical physics and mathematics, and one of the seven Millennium Prize Problems defined by the Clay Mathematics Institute, which has offered a prize of US$1,000,000 for its solution.

In physics, the Tsallis entropy is a generalization of the standard Boltzmann–Gibbs entropy.

The Bose–Hubbard model gives a description of the physics of interacting spinless bosons on a lattice. It is closely related to the Hubbard model that originated in solid-state physics as an approximate description of superconducting systems and the motion of electrons between the atoms of a crystalline solid. The model was introduced by Gersch and Knollman in 1963 in the context of granular superconductors. The model rose to prominence in the 1980s after it was found to capture the essence of the superfluid-insulator transition in a way that was much more mathematically tractable than fermionic metal-insulator models.

<span class="mw-page-title-main">Landau–Zener formula</span> Formula for the probability that a system will change between two energy states.

The Landau–Zener formula is an analytic solution to the equations of motion governing the transition dynamics of a two-state quantum system, with a time-dependent Hamiltonian varying such that the energy separation of the two states is a linear function of time. The formula, giving the probability of a diabatic transition between the two energy states, was published separately by Lev Landau, Clarence Zener, Ernst Stueckelberg, and Ettore Majorana, in 1932.

Adiabatic quantum computation (AQC) is a form of quantum computing which relies on the adiabatic theorem to do calculations and is closely related to quantum annealing.

In computational complexity theory, QMA, which stands for Quantum Merlin Arthur, is the set of languages for which, when a string is in the language, there is a polynomial-size quantum proof that convinces a polynomial time quantum verifier of this fact with high probability. Moreover, when the string is not in the language, every polynomial-size quantum state is rejected by the verifier with high probability.

<span class="mw-page-title-main">Quantum ergodicity</span>

In quantum chaos, a branch of mathematical physics, quantum ergodicity is a property of the quantization of classical mechanical systems that are chaotic in the sense of exponential sensitivity to initial conditions. Quantum ergodicity states, roughly, that in the high-energy limit, the probability distributions associated to energy eigenstates of a quantized ergodic Hamiltonian tend to a uniform distribution in the classical phase space. This is consistent with the intuition that the flows of ergodic systems are equidistributed in phase space. By contrast, classical completely integrable systems generally have periodic orbits in phase space, and this is exhibited in a variety of ways in the high-energy limit of the eigenstates: typically, some form of concentration occurs in the semiclassical limit .

The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order (first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev.

Patrick Hayden is a physicist and computer scientist active in the fields of quantum information theory and quantum computing. He is currently a professor in the Stanford University physics department and a distinguished research chair at the Perimeter Institute for Theoretical Physics. Prior to that he held a Canada Research Chair in the physics of information at McGill University. He received a B.Sc. (1998) from McGill University and won a Rhodes Scholarship to study for a D.Phil. (2001) at the University of Oxford under the supervision of Artur Ekert. In 2007 he was awarded the Sloan Research Fellowship in Computer Science. He was a Canadian Mathematical Society Public Lecturer in 2008 and received a Simons Investigator Award in 2014.

In quantum many-body physics, topological degeneracy is a phenomenon in which the ground state of a gapped many-body Hamiltonian becomes degenerate in the limit of large system size such that the degeneracy cannot be lifted by any local perturbations.

Symmetry-protected topological (SPT) order is a kind of order in zero-temperature quantum-mechanical states of matter that have a symmetry and a finite energy gap.

The Lieb–Robinson bound is a theoretical upper limit on the speed at which information can propagate in non-relativistic quantum systems. It demonstrates that information cannot travel instantaneously in quantum theory, even when the relativity limits of the speed of light are ignored. The existence of such a finite speed was discovered mathematically by Elliott H. Lieb and Derek W. Robinson in 1972. It turns the locality properties of physical systems into the existence of, and upper bound for this speed. The bound is now known as the Lieb–Robinson bound and the speed is known as the Lieb–Robinson velocity. This velocity is always finite but not universal, depending on the details of the system under consideration. For finite-range, e.g. nearest-neighbor, interactions, this velocity is a constant independent of the distance travelled. In long-range interacting systems, this velocity remains finite, but it can increase with the distance travelled.

Andrew MacGregor Childs is an American computer scientist and physicist known for his work on quantum computing. He is currently a Professor in the Department of Computer Science and Institute for Advanced Computer Studies at the University of Maryland. He also co-directs the Joint Center for Quantum Information and Computer Science, a partnership between the University of Maryland and the National Institute of Standards and Technology.

PT symmetry was initially studied as a specific system in non-Hermitian quantum mechanics, where Hamiltonians are not Hermitian. In 1998, physicist Carl Bender and former graduate student Stefan Boettcher published in Physical Review Letters a paper in quantum mechanics, "Real Spectra in non-Hermitian Hamiltonians Having PT Symmetry." In this paper, the authors found non-Hermitian Hamiltonians endowed with an unbroken PT symmetry also may possess a real spectrum. Under a correctly-defined inner product, a PT-symmetric Hamiltonian's eigenfunctions have positive norms and exhibit unitary time evolution, requirements for quantum theories. Bender won the 2017 Dannie Heineman Prize for Mathematical Physics for his work.

A fracton is an emergent topological quasiparticle excitation which is immobile when in isolation. Many theoretical systems have been proposed in which fractons exist as elementary excitations. Such systems are known as fracton models. Fractons have been identified in various CSS codes as well as in symmetric tensor gauge theories.

In many-body physics, most commonly within condensed-matter physics, a gapped Hamiltonian is a Hamiltonian for an infinitely large many-body system where there is a finite energy gap separating the ground space from the first excited states. A Hamiltonian that is not gapped is called gapless.

Hamiltonian simulation is a problem in quantum information science that attempts to find the computational complexity and quantum algorithms needed for simulating quantum systems. Hamiltonian simulation is a problem that demands algorithms which implement the evolution of a quantum state efficiently. The Hamiltonian simulation problem was proposed by Richard Feynman in 1982, where he proposed a quantum computer as a possible solution since the simulation of general Hamiltonians seem to grow exponentially with respect to the system size.

References

  1. Cubitt, Toby S.; Perez-Garcia, David; Wolf, Michael M. (2015-12-10). "Undecidability of the spectral gap". Nature. US. 528 (7581): 207–211. arXiv: 1502.04135 . Bibcode:2015Natur.528..207C. doi:10.1038/nature16059. PMID   26659181. S2CID   4451987.
  2. Lim, Jappy (11 December 2015). "Scientists Just Proved A Fundamental Quantum Physics Problem is Unsolvable". Futurism. Retrieved 18 December 2018.
  3. Nachtergaele, Bruno; Sims, Robert (22 March 2006). "Lieb-Robinson Bounds and the Exponential Clustering Theorem". Communications in Mathematical Physics. 265 (1): 119–130. arXiv: math-ph/0506030 . Bibcode:2006CMaPh.265..119N. doi:10.1007/s00220-006-1556-1. S2CID   815023.
  4. Hastings, Matthew B.; Koma, Tohru (22 April 2006). "Spectral Gap and Exponential Decay of Correlations". Communications in Mathematical Physics. 265 (3): 781–804. arXiv: math-ph/0507008 . Bibcode:2006CMaPh.265..781H. doi:10.1007/s00220-006-0030-4. S2CID   7941730.
  5. Gosset, David; Huang, Yichen (3 March 2016). "Correlation Length versus Gap in Frustration-Free Systems". Physical Review Letters. 116 (9): 097202. arXiv: 1509.06360 . Bibcode:2016PhRvL.116i7202G. doi: 10.1103/PhysRevLett.116.097202 . PMID   26991196.
  6. Cubitt, Toby S.; Perez-Garcia, David; Wolf, Michael M. (2015). "Undecidability of the spectral gap". Nature. 528 (7581): 207–211. arXiv: 1502.04135 . Bibcode:2015Natur.528..207C. doi:10.1038/nature16059. PMID   26659181. S2CID   4451987.
  7. Kreinovich, Vladik. "Why Some Physicists Are Excited About the Undecidability of the Spectral Gap Problem and Why Should We". Bulletin of the European Association for Theoretical Computer Science. 122 (2017). Retrieved 18 December 2018.
  8. Cubitt, Toby S.; Perez-Garcia, David; Wolf, Michael M. (November 2018). "The Unsolvable Problem" . Scientific American.
  9. Bausch, Johannes; Cubitt, Toby S.; Lucia, Angelo; Perez-Garcia, David (17 August 2020). "Undecidability of the Spectral Gap in One Dimension". Physical Review X. 10 (3): 031038. Bibcode:2020PhRvX..10c1038B. doi: 10.1103/PhysRevX.10.031038 . S2CID   73583883.