Spheroidal weathering

Last updated
Spheroidal or woolsack weathering in granite on Haytor, Dartmoor, England Haytor evening light.jpg
Spheroidal or woolsack weathering in granite on Haytor, Dartmoor, England
Spheroidal weathering in granite, Estaca de Bares, A Coruna, Galicia, Spain Concentric spheroidal weathering in granite.JPG
Spheroidal weathering in granite, Estaca de Bares, A Coruña, Galicia, Spain
Woolsack weathering in sandstone at the Externsteine rocks, Teutoburg Forest, Germany Wollsackverwitterung an den Externsteinen.jpg
Woolsack weathering in sandstone at the Externsteine rocks, Teutoburg Forest, Germany
Corestones near Musina, South Africa that were created by spherodial weathering and exposed by the removal of surrounding saprolite by erosion. South-africa-sphere-weath.JPG
Corestones near Musina, South Africa that were created by spherodial weathering and exposed by the removal of surrounding saprolite by erosion.
Spheroidal weathering of a dolerite dyke, Pilbara, Western Australia Weathering dolerite dyke.JPG
Spheroidal weathering of a dolerite dyke, Pilbara, Western Australia

Spheroidal weathering is a form of chemical weathering that affects jointed bedrock and results in the formation of concentric or spherical layers of highly decayed rock within weathered bedrock that is known as saprolite. When saprolite is exposed by physical erosion, these concentric layers peel (spall) off as concentric shells much like the layers of a peeled onion. Within saprolite, spheroidal weathering often creates rounded boulders, known as corestones or woolsack, of relatively unweathered rock. Spheroidal weathering is also called onion skin weathering,concentric weathering,spherical weathering, or woolsack weathering. [1] [2] [3] [4]

Contents

Weathering process

Spheroidal weathering is the result of chemical weathering of systematically jointed, massive rocks, including granite, dolerite, basalt and sedimentary rocks such as silicified sandstone. It occurs as the result of the chemical alteration of such rocks along intersecting joints. The chemical alteration of the rock results in the formation of abundant secondary minerals such as kaolinite, sericite, serpentine, montmorillonite, and chlorite and a corresponding increase in the volume of the altered rock. When the joints within bedrock form a 3-dimensional network, they subdivide it into separate blocks, often in the form of rough cubes or rectangular prisms that are bounded by these joints. Because water can penetrate the bedrock along these joints, the near-surface bedrock will be altered by weathering progressively inward along the faces of these blocks. The alteration by weathering of the bedrock will be greatest along the corners of each block, followed by the edges, and finally the faces of the cube. The differences in weathering rates between the corners, edges, and faces of a bedrock block will result in the formation of spheroidal layers of altered rock that surround an unaltered rounded boulder-size core of relatively unaltered rock known as a corestone or woolsack. Spheroidal weathering has often been incorrectly attributed solely to various types of physical weathering. [1] [2] [5]

Frequently, erosion has removed the layers of altered rock and other saprolite surrounding corestones that were produced by spheroidal weathering. This leaves many corestones as freestanding boulders on the ground's surface. Often the spheroidal weathering, which created these corestones and the enclosing saprolite occurred in the prehistoric past during periods of humid, even tropical climates. Frequently, the removal of the saprolite by erosion and exposure of corestones as freestanding residual boulders, tors, or other landforms occurs many thousands of years later and during vastly different climatic conditions. [1] [2] [6] [7]

Depending on local environmental conditions, spheroidal weathering of bedrock blocks defined by tectonically induced joints and fractures may result in the formation of prominent and well-defined Liesegang rings within these blocks. These blocks typically consist of bedrock blocks (Liesegang blocks), which are bounded on their periphery by joints and fractures, and, in sedimentary rocks, bedding planes above and below. Each Liesegang block consists of a relatively unaltered core surrounded by concentric, alternating shells of iron-poor (intermediate shells) and iron-rich ('iron' shells) composition which make up the Liesegang rings. These iron-poor and iron-rich shells follow the configuration of the outer shape of the block and are sub-parallel to its sides. The iron-rich and iron-poor shells vary in degree of cementation and, as a result, can produce box work weathering structures during subsequent erosion. The degree of development of Liesegang rings as the result of weathering depends upon the spacing of the joint systems, groundwater flow, local topography, bedrock composition, and bed thickness. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Weathering</span> Deterioration of rocks and minerals through exposure to the elements

Weathering is the deterioration of rocks, soils and minerals as well as wood and artificial materials through contact with water, atmospheric gases, and biological organisms. Weathering occurs in situ, and so is distinct from erosion, which involves the transport of rocks and minerals by agents such as water, ice, snow, wind, waves and gravity.

<span class="mw-page-title-main">Karlu Karlu / Devils Marbles Conservation Reserve</span> Protected area in the Northern Territory, Australia

Karlu Karlu / Devils Marbles Conservation Reserve is a protected area in the Northern Territory of Australia located in the locality of Warumungu about 105 km (65 mi) south of Tennant Creek, and 393 km (244 mi) north of Alice Springs. The nearest settlement is the small town of Wauchope located 9 km (5.6 mi) to the south.

<span class="mw-page-title-main">Concretion</span> Compact mass formed by precipitation of mineral cement between particles

A concretion is a hard, compact mass formed by the precipitation of mineral cement within the spaces between particles, and is found in sedimentary rock or soil. Concretions are often ovoid or spherical in shape, although irregular shapes also occur. The word 'concretion' is derived from the Latin concretio "(act of) compacting, condensing, congealing, uniting", itself from con meaning 'together' and crescere meaning "to grow". Concretions form within layers of sedimentary strata that have already been deposited. They usually form early in the burial history of the sediment, before the rest of the sediment is hardened into rock. This concretionary cement often makes the concretion harder and more resistant to weathering than the host stratum.

<span class="mw-page-title-main">Elephant Rocks State Park</span> State park in Missouri, United States

Elephant Rocks State Park is a state-owned geologic reserve and public recreation area encompassing an outcropping of Precambrian granite in the Saint Francois Mountains in the U.S. state of Missouri. The state park is named for a string of large granite boulders which resemble a train of pink circus elephants. The park was created following the donation of the land to the state in 1967 by geologist Dr. John Stafford Brown. The park is used for picnicking, rock climbing, and trail exploration. It is managed by the Missouri Department of Natural Resources.

<span class="mw-page-title-main">Exfoliation joint</span>

Exfoliation joints or sheet joints are surface-parallel fracture systems in rock, and often leading to erosion of concentric slabs. (See Joint ).

<span class="mw-page-title-main">Joint (geology)</span> Geological term for a type of fracture in rock

A joint is a break (fracture) of natural origin in a layer or body of rock that lacks visible or measurable movement parallel to the surface (plane) of the fracture. Although joints can occur singly, they most frequently appear as joint sets and systems. A joint set is a family of parallel, evenly spaced joints that can be identified through mapping and analysis of their orientations, spacing, and physical properties. A joint system consists of two or more intersecting joint sets.

<span class="mw-page-title-main">Hickory Run State Park</span> State park in Pennsylvania, United States

Hickory Run State Park is a 15,990-acre (6,471 ha) Pennsylvania state park in Kidder and Penn Forest Townships in Carbon County, Pennsylvania in the United States. The park is spread across the Pocono Mountains. The park is easily accessible from Interstate 476 and Interstate 80.

This glossary of geology is a list of definitions of terms and concepts relevant to geology, its sub-disciplines, and related fields. For other terms related to the Earth sciences, see Glossary of geography terms.

<span class="mw-page-title-main">Granite Dells</span> Geologic feature near Prescott, AZ

The Granite Dells is a geological feature north of Prescott, Arizona. The Dells consist of exposed bedrock and large boulders of granite that have eroded into an unusual lumpy, rippled appearance. Watson Lake and Willow Lake are small man-made reservoirs in this formation.

<span class="mw-page-title-main">Balancing rock</span> Naturally occurring precariously balanced rock

A balancing rock, also called a balanced rock or precarious boulder, is a naturally occurring geological formation featuring a large rock or boulder, sometimes of substantial size, resting on other rocks, bedrock, or on glacial till. Some formations known by this name only appear to be balancing, but are in fact firmly connected to a base rock by a pedestal or stem.

<span class="mw-page-title-main">Geology of Cape Town</span> Geological formations and their history in the vicinity of Cape Town

Cape Town lies at the south-western corner of the continent of Africa. It is bounded to the south and west by the Atlantic Ocean, and to the north and east by various other municipalities in the Western Cape province of South Africa.

<span class="mw-page-title-main">Saprolite</span> Chemically weathered rock

Saprolite is a chemically weathered rock. Saprolites form in the lower zones of soil profiles and represent deep weathering of the bedrock surface. In most outcrops, its color comes from ferric compounds. Deeply weathered profiles are widespread on the continental landmasses between latitudes 35°N and 35°S.

<span class="mw-page-title-main">Liesegang rings (geology)</span>

Liesegang rings are colored bands of cement observed in sedimentary rocks that typically cut across bedding. These secondary (diagenetic) sedimentary structures exhibit bands of (authigenic) minerals that are arranged in a regular repeating pattern. Liesegang rings are distinguishable from other sedimentary structures by their concentric or ring-like appearance. The precise mechanism from which Liesegang rings form is not entirely known and is still under research, but there is a precipitation process that is thought to be the catalyst for Liesegang ring formation, referred to as the Ostwald-Liesegang supersaturation-nucleation-depletion cycle. Though Liesegang rings are considered a frequent occurrence in sedimentary rocks, rings composed of iron oxide can also occur in permeable igneous and metamorphic rocks that have been chemically weathered.

<span class="mw-page-title-main">Weathering rind</span>

A weathering rind is a discolored, chemically altered, outer zone or layer of a discrete rock fragment formed by the processes of weathering. The inner boundary of a weathering rind approximately parallels the outer surface of the rock fragment in which it has developed. Rock fragments with weathering rinds normally are discrete clasts, ranging in size from pebbles to cobbles or boulders. They typically occur either lying on the surface of the ground or buried within sediments such as alluvium, colluvium, or glacial till. A weathering rind represents the alteration of the outer portion of a rock by exposure to air or near surface groundwater over a period of time. Typically, a weathering rind may be enriched with either iron or manganese, and silica, and oxidized to a yellowish red to reddish color. Often a weathering rind exhibits multiple bands of differing colors.

<span class="mw-page-title-main">Gornaya Shoria megaliths</span> Rock formation in Siberia

The Gornaya Shoria megaliths, meaning Mount Shoria megaliths, are rock formations forming part of Mount Shoriya in southern Siberia, Russia, lying to the east of the Altay Mountains.

<span class="mw-page-title-main">Cheung Chau Mini Great Wall</span> Hiking trail in New Territories, Hong Kong

The Mini Great Wall or Little Great Wall is a hiking trail on Cheung Chau, an island of Hong Kong.

<span class="mw-page-title-main">Nubbin (landform)</span> Small hill of bedrock with rounded residual blocks

In geomorphology a nubbin is a small and gentle hill consisting of a bedrock core dotted with rounded residual blocks. The blocks derive from disintegrated and weathered bedrock layers. In particular it is assumed that the boulders of the nubbins are the remnants of the outer one or two exfoliation shells that weathered underground, albeit some weathering can continue to occur once the boulders are exposed on surface.

<span class="mw-page-title-main">Exfoliating granite</span> Granite skin peeling like an onion (desquamation) because of weathering

Exfoliating granite is a granite undergoing exfoliation, or onion skin weathering (desquamation). The external delaminated layers of granite are gradually produced by the cyclic variations of temperature at the surface of the rock in a process also called spalling. Frost and ice expansion in the joints during the winter accelerate the alteration process while the most unstable loosen external layers are removed by gravity assisted by runoff water.

<span class="mw-page-title-main">Catoctin Formation</span>

The Catoctin Formation is a geologic formation that expands through Virginia, Maryland, and Pennsylvania. It dates back to the Precambrian and is closely associated with the Harpers Formation, Weverton Formation, and the Loudoun Formation. The Catoctin Formation lies over the a granite basement rock and below the Chilhowee Group making it only exposed on the outer parts of the Blue Ridge. The Catoctin Formation contains metabasalt, metarhyolite, and porphyritic rocks, columnar jointing, low-dipping primary joints, amygdules, sedimentary dikes, and flow breccias. Evidence for past volcanic activity includes columnar basalts and greenstone dikes.

The geology of Eswatini formed beginning 3.6 billion years ago, in the Archean Eon of the Precambrian. Eswatini is the only country entirely underlain by the Kaapvaal Craton, one of the oldest pieces of stable continental crust and the only craton regarded as "pristine" by geologists, other than the Yilgarn Craton in Australia. As such, the country has very ancient granite, gneiss and in some cases sedimentary rocks from the Archean into the Proterozoic, overlain by sedimentary rocks and igneous rocks formed during the last 539 million years of the Phanerozoic as part of the Karoo Supergroup. Intensive weathering has created thick zones of saprolite and heavily weathered soils.

References

  1. 1 2 3 Fairbridge, RW (1968) Spheroidal Weathering. in RW Fairbridge, ed., pp. 1041–1044, The Encyclopedia of Geomorphology, Encyclopedia of Earth Sciences, vol. III. Reinhold Book Corporation, New York, New York.
  2. 1 2 3 Ollier, C.D. (1971). Causes of spheroidal weathering. Earth-Science Reviews 7:127–141.
  3. Neuendorf, KKE, JP Mehl Jr., and JA Jackson, eds. (2005) Glossary of Geology (5th ed.). Alexandria, Virginia, American Geological Institute. 779 pp. ISBN   0-922152-76-4
  4. Kolawole, F.; Anifowose, A. Y. B. (2011-01-01). "Talus Caves: Geotourist Attractions Formed by Spheroidal and Exfoliation Weathering on Akure-Ado Inselbergs, Southwestern Nigeria". Ethiopian Journal of Environmental Studies and Management. 4 (3): 1–6. doi: 10.4314/ejesm.v4i3.1 . ISSN   1998-0507.
  5. Heald, MT, TJ Hollingsworth and RM Smith (1979) Alteration of Sandstone as Revealed by Spheroidal Weathering. Journal of Sedimentary Petrology. 49(3):901–909.
  6. Twidale, C.R., and J.R. Vidal Romani (2005) Landforms and Geology of Granite Terrains. A.A. Balkema Publishers Leiden, The Netherlands. 330 pp. ISBN   0-415-36435-3
  7. Migoń, P. (2006) Granite Landscapes of the World. (Geomorphological Landscapes of the World) Oxford University Press Inc., New York. 384 pp. ISBN   0-19-927368-5
  8. Shahabpour, J. (1998) Liesegang blocks from sandstone beds of the Hojedk Formation, Kerman, Iran. Geomorphology. 22:93–106