Spiral similarity

Last updated
A spiral similarity taking triangle ABC to triangle A'B'C'. Spiral similarity example.png
A spiral similarity taking triangle ABC to triangle A'B'C'.

Spiral similarity is a plane transformation in mathematics composed of a rotation and a dilation. [1] It is used widely in Euclidean geometry to facilitate the proofs of many theorems and other results in geometry, especially in mathematical competitions and olympiads. Though the origin of this idea is not known, it was documented in 1967 by Coxeter in his book Geometry Revisited. [2] and 1969 - using the term "dilative rotation" - in his book Introduction to Geometry. [3]

Contents

The following theorem is important for the Euclidean plane:
Any two directly similar figures are related either by a translation or by a spiral similarity. [4]
(Hint: Directly similar figures are similar and have the same orientation)

Definition

A spiral similarity is composed of a rotation of the plane followed a dilation about a center with coordinates in the plane. [5] Expressing the rotation by a linear transformation and the dilation as multiplying by a scale factor , a point gets mapped to

On the complex plane, any spiral similarity can be expressed in the form , where is a complex number. The magnitude is the dilation factor of the spiral similarity, and the argument is the angle of rotation. [6]

Properties

Two circles

Spiral similarity DrehStreckung-3.svg
Spiral similarity

Let T be a spiral similarity mapping circle k to k' with k k' = {C, D} and fixed point C.

Then for each point P k the points P, T(P)= P' and D are collinear.

Remark: This property is the basis for the construction of the center of a spiral similarity for two linesegments.

Proof:

, as rotation and dilation preserve angles.

, as if the radius intersects the chord , then doesn't meet , and if doesn't intersect , then intersects , so one of these angles is and the other is .

So P, P' and D are collinear.

Center of a spiral similarity for two line segments

Through a dilation of a line, rotation, and translation, any line segment can be mapped into any other through the series of plane transformations. We can find the center of the spiral similarity through the following construction: [1]

Center of spiral similarity construction.png

Proof: Note that and are cyclic quadrilaterals. Thus, . Similarly, . Therefore, by AA similarity, triangles and are similar. Thus, so a rotation angle mapping to also maps to . The dilation factor is then just the ratio of side lengths to . [5]

Solution with complex numbers

If we express and as points on the complex plane with corresponding complex numbers and , we can solve for the expression of the spiral similarity which takes to and to . Note that and , so . Since and , we plug in to obtain , from which we obtain . [5]

Pairs of spiral similarities

For any points and , the center of the spiral similarity taking to is also the center of a spiral similarity taking to .

This can be seen through the above construction. If we let be the center of spiral similarity taking to , then . Therefore, . Also, implies that . So, by SAS similarity, we see that . Thus is also the center of the spiral similarity which takes to . [5] [6]

Corollaries

Proof of Miquel's Quadrilateral Theorem

Spiral similarity can be used to prove Miquel's Quadrilateral Theorem: given four noncollinear points and , the circumcircles of the four triangles and intersect at one point, where is the intersection of and and is the intersection of and (see diagram). [1]

Miquel diagram 1.png

Let be the center of the spiral similarity which takes to . By the above construction, the circumcircles of and intersect at and . Since is also the center of the spiral similarity taking to , by similar reasoning the circumcircles of and meet at and . Thus, all four circles intersect at . [1]

Example problem

Here is an example problem on the 2018 Japan MO Finals which can be solved using spiral similarity:

Given a scalene triangle , let and be points on segments and , respectively, so that . Let be the circumcircle of triangle and the reflection of across . Lines and meet again at and , respectively. Prove that and intersect on . [5]

Olympiadproblem.png

Proof: We first prove the following claims:

Claim 1: Quadrilateral is cyclic.

Proof: Since is isosceles, we note that thus proving that quadrilateral is cyclic, as desired. By symmetry, we can prove that quadrilateral is cyclic.

Claim 2:

Proof: We have that By similar reasoning, so by AA similarity, as desired.

We now note that is the spiral center that maps to . Let be the intersection of and . By the spiral similarity construction above, the spiral center must be the intersection of the circumcircles of and . However, this point is , so thus points must be concyclic. Hence, must lie on , as desired.

Related Research Articles

<span class="mw-page-title-main">Triangle</span> Shape with three sides

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. The triangle's interior is a two-dimensional region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex.

<span class="mw-page-title-main">Similarity (geometry)</span> Property of objects which are scaled or mirrored versions of each other

In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling, possibly with additional translation, rotation and reflection. This means that either object can be rescaled, repositioned, and reflected, so as to coincide precisely with the other object. If two objects are similar, each is congruent to the result of a particular uniform scaling of the other.

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law,

<span class="mw-page-title-main">Nine-point circle</span> Circle constructed from a triangle

In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:

<span class="mw-page-title-main">Incircle and excircles</span> Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

<span class="mw-page-title-main">Rhombus</span> Quadrilateral with sides of equal length

In plane Euclidean geometry, a rhombus is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a "diamond", after the diamonds suit in playing cards which resembles the projection of an octahedral diamond, or a lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle, and the latter sometimes refers specifically to a rhombus with a 45° angle.

<span class="mw-page-title-main">Cyclic quadrilateral</span> Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

<span class="mw-page-title-main">Thales's theorem</span> Angle formed by a point on a circle and the 2 ends of a diameter is a right angle

In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.

<span class="mw-page-title-main">Concyclic points</span> Points on a common circle

In geometry, a set of points are said to be concyclic if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle.

<span class="mw-page-title-main">Morley's trisector theorem</span> 3 intersections of any triangles adjacent angle trisectors form an equilateral triangle

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles.

<span class="mw-page-title-main">Ptolemy's theorem</span> Relates the 4 sides and 2 diagonals of a quadrilateral with vertices on a common circle

In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral. The theorem is named after the Greek astronomer and mathematician Ptolemy. Ptolemy used the theorem as an aid to creating his table of chords, a trigonometric table that he applied to astronomy.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Simson line</span> Line constructed from a triangle

In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. The line through these points is the Simson line of P, named for Robert Simson. The concept was first published, however, by William Wallace in 1799, and is sometimes called the Wallace line.

<span class="mw-page-title-main">Homothetic center</span> Point from which two similar geometric figures can be scaled to each other

In geometry, a homothetic center is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another. If the center is external, the two figures are directly similar to one another; their angles have the same rotational sense. If the center is internal, the two figures are scaled mirror images of one another; their angles have the opposite sense.

In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems, and play an important role in many geometrical constructions and proofs. Since the tangent line to a circle at a point P is perpendicular to the radius to that point, theorems involving tangent lines often involve radial lines and orthogonal circles.

<span class="mw-page-title-main">Snellius–Pothenot problem</span> Problem in trigonometry

In trigonometry, the Snellius–Pothenot problem is a problem first described in the context of planar surveying. Given three known points A, B, C, an observer at an unknown point P observes that the line segment AC subtends an angle α and the segment CB subtends an angle β; the problem is to determine the position of the point P..

<span class="mw-page-title-main">Bicentric quadrilateral</span> Convex, 4-sided shape with an incircle and a circumcircle

In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.

In geometry, the Weber problem, named after Alfred Weber, is one of the most famous problems in location theory. It requires finding a point in the plane that minimizes the sum of the transportation costs from this point to n destination points, where different destination points are associated with different costs per unit distance.

<span class="mw-page-title-main">Newton–Gauss line</span> Line joining midpoints of a complete quadrilaterals 3 diagonals

In geometry, the Newton–Gauss line is the line joining the midpoints of the three diagonals of a complete quadrilateral.

<span class="mw-page-title-main">Mixtilinear incircles of a triangle</span> Circle tangent to two sides of a triangle and its circumcircle

In plane geometry, a mixtilinear incircle of a triangle is a circle which is tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex is called the -mixtilinear incircle. Every triangle has three unique mixtilinear incircles, one corresponding to each vertex.

References

  1. 1 2 3 4 Chen, Evan (2016). Euclidean Geometry in Mathematical Olympiads. United States: MAA Press. pp. 196–200. ISBN   978-0-88385-839-4.
  2. Coxeter, H.S.M. (1967). Geometry Revisited . Toronto and New York: Mathematical Association of America. pp.  95–100. ISBN   978-0-88385-619-2.
  3. Coxeter, H.S.M. (1969). Introduction to Geometry (2 ed.). New York, London, Sydney and Toronto: John Wiley & Sons. pp. 72–75.
  4. Coxeter, H.S.M. (1967). Geometry Revisited. Mathematical Association of America. p. 97]. ISBN   978-0-88385-619-2.
  5. 1 2 3 4 5 Baca, Jafet (2019). "On a special center of spiral similarity". Mathematical Reflections. 1: 1–9.
  6. 1 2 Zhao, Y. (2010). Three Lemmas in Geometry. See also Solutions