Sporinite

Last updated

Sporinite is a kind of exinite maceral found in coal formed from spores and pollen. [1] It is a Type II kerogen.

Related Research Articles

Coal Combustible sedimentary rock composed primarily of carbon

Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. Coal is formed when dead plant matter decays into peat and is converted into coal by the heat and pressure of deep burial over millions of years. Vast deposits of coal originate in former wetlands—called coal forests—that covered much of the Earth's tropical land areas during the late Carboniferous (Pennsylvanian) and Permian times. However, many significant coal deposits are younger than this and originate from the Mesozoic and Cenozoic eras.

Coalbed methane extraction is a method for extracting methane from a coal deposit. Coal bed methane (CBM) is one of the factors restricting safe production of coal in underground coal mines. It is also a form of high-quality energy that can be used in many fields such as power generation, heating, and chemical industries. CBM extraction is therefore carried out prior to extraction with a view of increasing the safety of mining coal beds, and as a useful energy resource to be exploited.

Coke (fuel) Grey, hard and porous fuel with high carbon content and few impurities.

Coke is a grey, hard, and porous coal-based fuel with a high carbon content and few impurities, made by heating coal or oil in the absence of air—a destructive distillation process. It is an important industrial product, used mainly in iron ore smelting, but also as a fuel in stoves and forges when air pollution is a concern.

Bituminous coal Collective term for higher quality coal

Bituminous coal, or black coal, is a type of coal containing a tar-like substance called bitumen or asphalt. Its coloration can be black or sometimes dark brown; often there are well-defined bands of bright and dull material within the seams. It is typically hard but friable. Its quality is ranked higher than lignite and sub-bituminous coal, but lesser than anthracite. It is the most abundant rank of coal, with deposits found around the world, often in rocks of Carboniferous age. Bituminous coal is formed from sub-bituminous coal that is buried deeply enough to be heated to 85 °C (185 °F) or higher.

Kerogen is solid, insoluble organic matter in sedimentary rocks. Comprising an estimated 1016 tons of carbon, it is the most abundant source of organic compounds on earth, exceeding the total organic content of living matter 10,000-fold. It is insoluble in normal organic solvents and it does not have a specific chemical formula. Upon heating, kerogen converts in part to liquid and gaseous hydrocarbons. Petroleum and natural gas form from kerogen. Kerogen may be classified by its origin: lacustrine (e.g., algal), marine (e.g., planktonic), and terrestrial (e.g., pollen and spores). The name "kerogen" was introduced by the Scottish organic chemist Alexander Crum Brown in 1906, derived from the Greek for "wax birth" (Greek: κηρός "wax" and -gen, γένεση "birth").

Vitrinite is one of the primary components of coals and most sedimentary kerogens. Vitrinite is a type of maceral, where "macerals" are organic components of coal analogous to the "minerals" of rocks. Vitrinite has a shiny appearance resembling glass (vitreous). It is derived from the cell-wall material or woody tissue of the plants from which coal was formed. Chemically, it is composed of polymers, cellulose and lignin.

Coal mining Process of getting coal out of the ground

Coal mining is the process of extracting coal from the ground. Coal is valued for its energy content and since the 1880s has been widely used to generate electricity. Steel and cement industries use coal as a fuel for extraction of iron from iron ore and for cement production. In the United Kingdom and South Africa, a coal mine and its structures are a colliery, a coal mine is called a 'pit', and the above-ground structures are a 'pit head'. In Australia, "colliery" generally refers to an underground coal mine.

Inertinite is oxidized organic material or fossilized charcoal. It is found as tiny flakes within sedimentary rocks. The presence of inertinite is significant in the geological record, as it signifies that wildfires occurred at the time that the host sediment was deposited. It is also an indication of oxidation due to atmospheric exposure or fungal decomposition during deposition. Inertinite is a common maceral in most types of coal. The main inertinite submacerals are fusinite, semifusinite, micrinite, macrinite and funginite. The most common type of inertinite maceral is semifusinite.

A maceral is a component, organic in origin, of coal or oil shale. The term 'maceral' in reference to coal is analogous to the use of the term 'mineral' in reference to igneous or metamorphic rocks. Examples of macerals are inertinite, vitrinite, and liptinite.

In coal geology, liptinite is the finely-ground and macerated remains found in coal deposits. It replaced the term exinite as one of the four categories of kerogen. Liptinites were originally formed by spores, pollen, dinoflagellate cysts, leaf cuticles, and plant resins and waxes.

Coalbed methane Form of natural gas extracted from coal beds

Coalbed methane, coalbed gas, coal seam gas (CSG), or coal-mine methane (CMM) is a form of natural gas extracted from coal beds. In recent decades it has become an important source of energy in United States, Canada, Australia, and other countries.

Fly ash Residue of coal combustion

Fly ash, flue ash, coal ash, or pulverised fuel ash – plurale tantum: coal combustion residuals (CCRs) – is a coal combustion product that is composed of the particulates that are driven out of coal-fired boilers together with the flue gases. Ash that falls to the bottom of the boiler's combustion chamber is called bottom ash. In modern coal-fired power plants, fly ash is generally captured by electrostatic precipitators or other particle filtration equipment before the flue gases reach the chimneys. Together with bottom ash removed from the bottom of the boiler, it is known as coal ash.

Cannel coal Type of bituminous coal or oil shale

Cannel coal or candle coal is a type of bituminous coal, also classified as terrestrial type oil shale. Due to its physical morphology and low mineral content cannel coal is considered to be coal but by its texture and composition of the organic matter it is considered to be oil shale. Although historically the term cannel coal has been used interchangeably with boghead coal, a more recent classification system restricts cannel coal to terrestrial origin, and boghead coal to lacustrine environments.

Coal India Indian government-owned coal mining and refining corporation

Coal India Limited (CIL) is an Indian government-owned coal mining and refining corporation, headquartered in Kolkata. It is the largest coal-producer in the world and a Maharatna public sector undertaking (PSU). It is also the seventh largest employer in India with nearly 272,000 employees.

Oil shale geology Branch of geology

Oil shale geology is a branch of geologic sciences which studies the formation and composition of oil shales–fine-grained sedimentary rocks containing significant amounts of kerogen, and belonging to the group of sapropel fuels. Oil shale formation takes place in a number of depositional settings and has considerable compositional variation. Oil shales can be classified by their composition or by their depositional environment. Much of the organic matter in oil shales is of algal origin, but may also include remains of vascular land plants. Three major type of organic matter (macerals) in oil shale are telalginite, lamalginite, and bituminite. Some oil shale deposits also contain metals which include vanadium, zinc, copper, and uranium.

Andrew Cunningham Scott is a British geologist, and professor emeritus at Royal Holloway University of London. He won the 2007 Gilbert H. Cady Award from the Geological Society of America for outstanding contributions to coal geology. He is widely regarded an expert on wildfire and charcoal and has highlighted the role of fire in deep time. He also contributes as a palaeobotanist and science communicator.

Bituminite is an autochthonous maceral that is a part of the liptinite group in lignite, that occurs in petroleum source rocks originating from organic matter such as algae which has undergone alteration or degradation from natural processes such as burial. It occurs as fine-grained groundmass, laminae or elongated structures that appear as veinlets within horizontal sections of lignite and bituminous coals, and also occurs in sedimentary rocks. Its occurrence in sedimentary rocks is typically found surrounding alginite, and parallel along bedding planes. Bituminite is not considered to be bitumen because its properties are different from most bitumens. It is described to have no definite shape or form when present in bedding and can be identified using different kinds of visible and fluorescent lights. There are three types of bituminite: type I, type II and type III, of which type I is the most common. The presence of bituminite in oil shales, other oil source rocks and some coals plays an important factor when determining potential petroleum-source rocks.

The Brassington Formation is a geological formation in the United Kingdom, and the country's most significant onshore Miocene deposit. it is preserved as around 60 inliers in karsts of Carboniferous limestone, specifically the Peak Limestone Group, in a triangular region on the borders of the Staffordshire and Derbyshire counties. The lithology largely consists of unconsolidated sand with clay and minor silt components. Pebble beds are also a significant component. It is divided up into three members, which are in ascending order the Kirkham Member, Bees Nest Member and the Kenslow Member. The Kenslow Member is dated to the Serravallian to Tortonian stages based on palynology.

Funginite Coal mineral based on fossilized fungus

Funginite is a maceral, a component, organic in origin, of coal or oil shale, that exhibits several different physical properties and characteristics under particular conditions, and its dimensions are based upon its source and place of discovery. Furthermore, it is primarily part of a group of macerals that naturally occur in rocks containing mostly carbon constituents, specifically coal. Due to its nature, research into the chemical structure and formula of funginite is considered limited and lacking. According to Chen et al. referencing ICCP, 2001, alongside the maceral secretinite, they "are both macerals of the inertinite group, which is more commonly known as fossilized charcoal, and were previously jointly classified as the maceral sclerotinite". In the scientific community, the discernment between the two does not remain entirely clear, but there are slight particular and specific differences in regards to the composition between both. It is also the product of fungal development on these carbon rich sedimentary rocks.

Sorthat Formation

The Sorthat Formation is a geologic formation on the island of Bornholm, Denmark and in the Rønne Graben in the Baltic Sea. It is of Latest Pliensbachian to Late Toarcian age. Plant fossils have been recovered from the formation, along with several traces of invertebrate animals. The Sorthat Formation is overlain by fluvial to lacustrine gravels, along with sands, clay and in some places coal beds that are part of the Aalenian-Bathonian Bagå Formation. Until 2003, the Sorthat Formation was included as the lowermost part of the Bagå Formation, recovering the latest Pliensbachian to lower Aalenian boundary. The Sorthat strata reflect a mostly marginally deltaic to marine unit. Large streams fluctuated to the east, where a large river system was established at the start of the Toarcian. In the northwest, local volcanism that started in the lower Pliensbachian extended along the North Sea, mostly from southern Sweden. At this time, the Central Skåne Volcanic Province and the Egersund Basin expelled most of their material, with influences on the local tectonics. The Egersund Basin has abundant fresh porphyritic nephelinite lavas and dykes of lower Jurassic age, with a composition nearly identical to those found in the clay pits. That indicates the transport of strata from the continental margin by large fluvial channels of the Sorthat and the connected Röddinge Formation that ended in the sea deposits of the Ciechocinek Formation green series.

References

  1. "Coal Macerals Tutorial". Archived from the original on 2011-07-20. Retrieved 2011-04-01.