Spring Back Compensation

Last updated

Spring Back Compensation occurs due to the plastic-elastic characteristic of a metal, because it is typical that any deformation of sheet metal at room temperature will have both elastic and plastic deformation. After the metal workpiece is removed from the tool or deformation implement, the elastic deformation will be released and only the plastic deformation will remain. When a metal forming tool is planned and designed to deform a workpiece, the shape imparted by the tool will be a combination of elastic and plastic deformation. The release of the elastic deformation is the spring back often observed at the end of a metal forming process. The spring back has to be compensated to achieve an accurate result.

Contents

Usually, that is realized by over-bending the material corresponding to the magnitude of the spring back. That means for the practical side of the bending process; the bending former, enters deeper into the bending prism.

For other sheet metal forming operations like drawing, it entails deforming the sheet metal past the planned net shape of the part, so that when the spring back is released from the part, the plastic deformation in that part delivers the desired shape of the part. In the case of complex tools, the spring back has to be already considered in the engineering and construction phases. Therefore, complex software simulations are used. Frequently this is not enough to deliver the desired results. In such cases practical experiments are done, using the trial-and-error plus experience method to correct the tool. However, the results (work pieces) are only stable, if all influencing factors are the same. [1]

This mainly includes:

The list of factors may be continued. Spring back assessment of final formed products is a difficult problem and is affected by the complexity of the formed shape. The NUMISHEET 93 conference benchmark problem involves the draw bending of a U-channel using three measured parameters. Parameter less approaches have been proposed for more complex geometries but need validation. [2]

Practical example: electronic bending tools with spring-back compensation

Electronic bending tool with integrated angle measurement and spring-back compensation Bending tool for Standard bending EHRT.jpg
Electronic bending tool with integrated angle measurement and spring-back compensation

Manufactures of electrical assembly's produce components that are flat, using copper and aluminum. The mechanical properties of copper and aluminum are very different and require different programmable inputs in order to achieve the same dimensional characteristics. This variation in inputs is due to spring-back compensation.

Bending technology for flat material which measures each bend angle and provides spring back compensation is required. This gives the bend angle of flat materials true accuracy. This is attained by using bending prisms with electronic angular measurement technology. While bending two flat bolds supporting the material turn around. The bolds are directly connected to the angular sensors. A computer or rather the machine control then calculates the required final stroke. The spring back of every bend is compensated regardless of material type.

If the measuring accuracy is 0.1º, a high angle accuracy of +/- 0.2º is achieved instantly with the first workpiece without any rework. Because no adjustments are required, material waste amounts and setup times drop considerably. Even inconsistencies within a single piece of material are automatically adjusted.

See also

Related Research Articles

<span class="mw-page-title-main">Forging</span> Metalworking process

Forging is a manufacturing process involving the shaping of metal using localized compressive forces. The blows are delivered with a hammer or a die. Forging is often classified according to the temperature at which it is performed: cold forging, warm forging, or hot forging. For the latter two, the metal is heated, usually in a forge. Forged parts can range in weight from less than a kilogram to hundreds of metric tons. Forging has been done by smiths for millennia; the traditional products were kitchenware, hardware, hand tools, edged weapons, cymbals, and jewellery.

<span class="mw-page-title-main">Metalworking</span> Process of making items from metal

Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry.

<span class="mw-page-title-main">Brake (sheet metal bending)</span>

A brake is a metalworking machine that allows the bending of sheet metal. A cornice brake only allows for simple bends and creases, while a box-and-pan brake also allows one to form box and pan shapes. It is also known as a bending machine or bending brake or in Britain as a sheet metal folder or just a folder.

A die is a specialized machine tool used in manufacturing industries to cut and/or form material to a desired shape or profile. Stamping dies are used with a press, as opposed to drawing dies and casting dies which are not. Like molds, dies are generally customized to the item they are used to create.

<span class="mw-page-title-main">Electromagnetic forming</span>

Electromagnetic forming is a type of high-velocity, cold forming process for electrically conductive metals, most commonly copper and aluminium. The workpiece is reshaped by high-intensity pulsed magnetic fields that induce a current in the workpiece and a corresponding repulsive magnetic field, rapidly repelling portions of the workpiece. The workpiece can be reshaped without any contact from a tool, although in some instances the piece may be pressed against a die or former. The technique is sometimes called high-velocity forming or electromagnetic pulse technology.

<span class="mw-page-title-main">Sheet metal</span> Metal formed into thin, flat pieces

Sheet metal is metal formed into thin, flat pieces, usually by an industrial process.

<span class="mw-page-title-main">Work hardening</span> Strengthening a material through plastic deformation

In materials science, work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. Work hardening may be desirable, undesirable, or inconsequential, depending on the context.

<span class="mw-page-title-main">Shot peening</span> Cold metal working process to produce compressive residual stress

Shot peening is a cold working process used to produce a compressive residual stress layer and modify the mechanical properties of metals and composites. It entails striking a surface with shot with force sufficient to create plastic deformation.

<span class="mw-page-title-main">Rolling (metalworking)</span> Metal forming process

In metalworking, rolling is a metal forming process in which metal stock is passed through one or more pairs of rolls to reduce the thickness, to make the thickness uniform, and/or to impart a desired mechanical property. The concept is similar to the rolling of dough. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is known as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is known as cold rolling. In terms of usage, hot rolling processes more tonnage than any other manufacturing process, and cold rolling processes the most tonnage out of all cold working processes. Roll stands holding pairs of rolls are grouped together into rolling mills that can quickly process metal, typically steel, into products such as structural steel, bar stock, and rails. Most steel mills have rolling mill divisions that convert the semi-finished casting products into finished products.

<span class="mw-page-title-main">Bending (metalworking)</span> Metalworking to produce a V-, U- or channel shape

Bending is a manufacturing process that produces a V-shape, U-shape, or channel shape along a straight axis in ductile materials, most commonly sheet metal. Commonly used equipment include box and pan brakes, brake presses, and other specialized machine presses. Typical products that are made like this are boxes such as electrical enclosures and rectangular ductwork.

<span class="mw-page-title-main">Press brake</span>

A press brake is a machine used for bending sheet metal and metal plate, most commonly sheet metal. It forms predetermined bends by clamping the workpiece between a matching top tool and bottom die.

In metallurgy, cold forming or cold working is any metalworking process in which metal is shaped below its recrystallization temperature, usually at the ambient temperature. Such processes are contrasted with hot working techniques like hot rolling, forging, welding, etc. The same or similar terms are used in glassmaking for the equivalents; for example cut glass is made by "cold work", cutting or grinding a formed object.

<span class="mw-page-title-main">Shear forming</span>

Shear forming, also referred as shear spinning, is similar to metal spinning. In shear spinning the area of the final piece is approximately equal to that of the flat sheet metal blank. The wall thickness is maintained by controlling the gap between the roller and the mandrel. In shear forming a reduction of the wall thickness occurs.

<span class="mw-page-title-main">Burnishing (metal)</span> Deformation of a metal surface due to friction

Burnishing is the plastic deformation of a surface due to sliding contact with another object. It smooths the surface and makes it shinier. Burnishing may occur on any sliding surface if the contact stress locally exceeds the yield strength of the material. The phenomenon can occur both unintentionally as a failure mode, and intentionally as part of a metalworking or manufacturing process. It is a squeezing operation under cold working.

<span class="mw-page-title-main">Tube bending</span>

Tube bending is any metal forming processes used to permanently form pipes or tubing. Tube bending may be form-bound or use freeform-bending procedures, and it may use heat supported or cold forming procedures.

<span class="mw-page-title-main">Friction stir processing</span>

Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. This deformation is produced by forcibly inserting a non-consumable tool into the workpiece, and revolving the tool in a stirring motion as it is pushed laterally through the workpiece. The precursor of this technique, friction stir welding, is used to join multiple pieces of metal without creating the heat affected zone typical of fusion welding.

<span class="mw-page-title-main">Roll bender</span> Machine that produces a circular arc shape from sheet metal or bars

A roll bender is a mechanical jig having three rollers used to bend a metal bar into a circular arc. The rollers freely rotate about three parallel axes, which are arranged with uniform horizontal spacing. Two outer rollers, usually immobile, cradle the bottom of the material while the inner roller, whose position is adjustable, presses on the topside of the material.

<span class="mw-page-title-main">Metal spinning</span>

Metal spinning, also known as spin forming or spinning or metal turning most commonly, is a metalworking process by which a disc or tube of metal is rotated at high speed and formed into an axially symmetric part. Spinning can be performed by hand or by a CNC lathe.

In metalworking, forming is the fashioning of metal parts and objects through mechanical deformation; the workpiece is reshaped without adding or removing material, and its mass remains unchanged. Forming operates on the materials science principle of plastic deformation, where the physical shape of a material is permanently deformed.

Rule based DFM analysis for forging is the controlled deformation of metal into a specific shape by compressive forces. The forging process goes back to 8000 B.C. and evolved from the manual art of simple blacksmithing. Then as now, a series of compressive hammer blows performs the shaping or forging of the part. Modern forging uses machine driven impact hammers or presses that deforms the work-piece by controlled pressure.

References

  1. Optimierung der Produkt- und Prozessentwicklung. ETH Zürich. 1999. p. 67. ISBN   978-3728126962.
  2. Raghavan; et al. (September 2013). "Numerical assessment of springback for the deep drawing process by level set interpolation using shape manifolds". International Journal of Material Forming. 7 (4): 487–501. doi:10.1007/s12289-013-1145-8. S2CID   255585418.