Starburst region

Last updated
Starburst in NGC 1569, a dwarf irregular galaxy (NASA photo). Starburst in a Dwarf Irregular Galaxy.jpg
Starburst in NGC 1569, a dwarf irregular galaxy (NASA photo).

A starburst region is a region of space that is undergoing a large amount of star formation. A starburst is an astrophysical process that involves star formation occurring at a rate that is large compared to the rate that is typically observed. This starburst activity will consume the available interstellar gas supply over a timespan that is much shorter than the lifetime of the galaxy. For example, the nebula NGC 6334 has a star formation rate estimated to be 3600 solar masses per million years [1] compared to the star formation rate of the entire Milky Way of about seven million solar masses per million years. [2] Due to the high amount of star formation a starburst is usually accompanied by much higher gas pressure and a larger ratio of hydrogen cyanide to carbon monoxide emission-lines than are usually observed. [3]

Tarantula Nebula, the largest starburst region in the local group. 30 Doradus, Tarantula Nebula.jpg
Tarantula Nebula, the largest starburst region in the local group.

Starbursts can occur in entire galaxies or just regions of space. For example, the Tarantula Nebula is a nebula in the Large Magellanic Cloud which has one of the highest star formation rates in the Local Group. [4] By contrast, a starburst galaxy is an entire galaxy that is experiencing a very high star formation rate. One notable example is Messier 82 in which the gas pressure is 100 times greater than in the local neighborhood, and it is forming stars at about the same rate as the entire Milky Way in a region only about 600 parsecs (2,000 ly) across. [3] At this rate M82 will consume its 200 million solar masses of atomic and molecular hydrogen in 100 million years (its free-fall time). [3]

Starburst regions can occur in different shapes, for example in Messier 94 the inner ring is a starburst region. [5] Messier 82 has a starburst core of about 600 parsec in diameter. [3] Starbursts are common during galaxy mergers such as the Antennae Galaxies. In the case of mergers, the starburst can either be local or galaxy-wide depending on the galaxies and how they are merging.

See also

Related Research Articles

<span class="mw-page-title-main">Galaxy</span> Large gravitationally bound system of stars and interstellar matter

A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek galaxias (γαλαξίας), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. Galaxies, averaging an estimated 100 million stars, range in size from dwarfs with less than a thousand stars, to the largest galaxies known – supergiants with one hundred trillion stars, each orbiting its galaxy's center of mass. Most of the mass in a typical galaxy is in the form of dark matter, with only a few percent of that mass visible in the form of stars and nebulae. Supermassive black holes are a common feature at the centres of galaxies.

<span class="mw-page-title-main">Globular cluster</span> Spherical collection of stars

A globular cluster is a spheroidal conglomeration of stars that is bound together by gravity, with a higher concentration of stars towards its center. It can contain anywhere from tens of thousands to many millions of member stars, all orbiting in a stable, compact formation. Globular clusters are similar in form to dwarf spheroidal galaxies, and the distinction between the two is not always clear. Their name is derived from Latin globulus. Globular clusters are occasionally known simply as "globulars".

<span class="mw-page-title-main">Open cluster</span> Large group of stars less bound than globular clusters

An open cluster is a type of star cluster made of tens to a few thousand stars that were formed from the same giant molecular cloud and have roughly the same age. More than 1,100 open clusters have been discovered within the Milky Way galaxy, and many more are thought to exist. Each one is loosely bound by mutual gravitational attraction and becomes disrupted by close encounters with other clusters and clouds of gas as they orbit the Galactic Center. This can result in a loss of cluster members through internal close encounters and a dispersion into the main body of the galaxy. Open clusters generally survive for a few hundred million years, with the most massive ones surviving for a few billion years. In contrast, the more massive globular clusters of stars exert a stronger gravitational attraction on their members, and can survive for longer. Open clusters have been found only in spiral and irregular galaxies, in which active star formation is occurring.

<span class="mw-page-title-main">Star cluster</span> Group of stars

Star clusters are large groups of stars held together by self-gravitation. Two main types of star clusters can be distinguished. Globular clusters are tight groups of ten thousand to millions of old stars which are gravitationally bound. Open clusters are more loosely clustered groups of stars, generally containing fewer than a few hundred members, that are often very young. As they move through the galaxy, over time, open clusters become disrupted by the gravitational influence of giant molecular clouds. Even though they are no longer gravitationally bound, they will continue to move in broadly the same direction through space and are then known as stellar associations, sometimes referred to as moving groups.

<span class="mw-page-title-main">Messier 100</span> Galaxy in the constellation Coma Berenices

Messier 100 is a grand design intermediate spiral galaxy in the southern part of the mildly northern Coma Berenices. It is one of the brightest and largest galaxies in the Virgo Cluster and is approximately 55 million light-years from our galaxy, its diameter being 107,000 light years, and being about 60% as large. It was discovered by Pierre Méchain in 1781 and 29 days later seen again and entered by Charles Messier in his catalogue "of nebulae and star clusters". It was one of the first spiral galaxies to be discovered, and was listed as one of fourteen spiral nebulae by Lord William Parsons of Rosse in 1850. NGC 4323 and NGC 4328 are satellite galaxies of M100; the former is connected with it by a bridge of luminous matter.

<span class="mw-page-title-main">Triangulum Galaxy</span> Spiral galaxy in the constellation Triangulum

The Triangulum Galaxy is a spiral galaxy 2.73 million light-years (ly) from Earth in the constellation Triangulum. It is catalogued as Messier 33 or NGC (New General Catalogue) 598. With the D25 isophotal diameter of 18.74 kiloparsecs (61,100 light-years), the Triangulum Galaxy is the third-largest member of the Local Group of galaxies, behind the Andromeda Galaxy and the Milky Way.

<span class="mw-page-title-main">H II region</span> Large, low-density interstellar cloud of partially ionized gas

An H II region or HII region is a region of interstellar atomic hydrogen that is ionized. It is typically in a molecular cloud of partially ionized gas in which star formation has recently taken place, with a size ranging from one to hundreds of light years, and density from a few to about a million particles per cubic centimetre. The Orion Nebula, now known to be an H II region, was observed in 1610 by Nicolas-Claude Fabri de Peiresc by telescope, the first such object discovered.

<span class="mw-page-title-main">Messier 87</span> Elliptical galaxy in the Virgo Galaxy Cluster

Messier 87 is a supergiant elliptical galaxy in the constellation Virgo that contains several trillion stars. One of the largest and most massive galaxies in the local universe, it has a large population of globular clusters—about 15,000 compared with the 150–200 orbiting the Milky Way—and a jet of energetic plasma that originates at the core and extends at least 1,500 parsecs, traveling at a relativistic speed. It is one of the brightest radio sources in the sky and a popular target for both amateur and professional astronomers.

<span class="mw-page-title-main">Rosette Nebula</span> Emission nebula in the constellation Monoceros

The Rosette Nebula is an H II region located near one end of a giant molecular cloud in the Monoceros region of the Milky Way Galaxy. The open cluster NGC 2244 is closely associated with the nebulosity, the stars of the cluster having been formed from the nebula's matter.

<span class="mw-page-title-main">Messier 82</span> Starburst galaxy in the constellation Ursa Major

Messier 82 (also known as NGC 3034, Cigar Galaxy or M82) is a starburst galaxy approximately 12 million light-years away in the constellation Ursa Major. It is the second-largest member of the M81 Group, with the D25 isophotal diameter of 12.52 kiloparsecs (40,800 light-years). It is about five times more luminous than the Milky Way and its central region is about one hundred times more luminous. The starburst activity is thought to have been triggered by interaction with neighboring galaxy M81. As one of the closest starburst galaxies to Earth, M82 is the prototypical example of this galaxy type. SN 2014J, a type Ia supernova, was discovered in the galaxy on 21 January 2014. In 2014, in studying M82, scientists discovered the brightest pulsar yet known, designated M82 X-2.

<span class="mw-page-title-main">NGC 604</span> H II region inside the Triangulum Galaxy

NGC 604 is an H II region inside the Triangulum Galaxy. It was discovered by William Herschel on September 11, 1784. It is among the largest H II regions in the Local Group of galaxies; at the galaxy's estimated distance of 2.7 million light-years, its longest diameter is roughly 1,520 light years (~460 parsecs), over 40 times the size of the visible portion of the Orion Nebula. It is over 6,300 times more luminous than the Orion Nebula, and if it were at the same distance it would outshine Venus. Its gas is ionized by a cluster of massive stars at its center with 200 stars of spectral type O and WR, a mass of 105 solar masses, and an age of 3.5 million years; however, unlike the Large Magellanic Cloud's Tarantula Nebula central cluster (R136), NGC 604's one is much less compact and more similar to a large stellar association.

<span class="mw-page-title-main">Tarantula Nebula</span> H II region in the constellation Dorado

The Tarantula Nebula is a large H II region in the Large Magellanic Cloud (LMC), forming its south-east corner.

<span class="mw-page-title-main">Messier 61</span> Galaxy in the constellation Virgo

Messier 61 is an intermediate barred spiral galaxy in the Virgo Cluster of galaxies. It was first discovered by Barnaba Oriani on May 5, 1779, six days before Charles Messier discovered the same galaxy. Messier had observed it on the same night as Oriani but had mistaken it for a comet. Its distance has been estimated to be 45.61 million light years from the Milky Way Galaxy. It is a member of the M61 Group of galaxies, which is a member of the Virgo II Groups, a series of galaxies and galaxy clusters strung out from the southern edge of the Virgo Supercluster.

<span class="mw-page-title-main">Orion Arm</span> Minor spiral arm of the Milky Way galaxy; contains the Solar System

The Orion Arm, also known as the Orion–Cygnus Arm, is a minor spiral arm within the Milky Way Galaxy spanning 3,500 light-years in width and extending roughly 20,000 light-years in length. This galactic structure encompasses the Solar System, including Earth. It is sometimes referred to by alternate names such as the Local Arm or Orion Bridge, and it was previously identified as the Local Spur or the Orion Spur. It should not be confused with the outer terminus of the Norma Arm, known as the Cygnus Arm.

<span class="mw-page-title-main">Omega Centauri</span> Globular cluster in the constellation Centaurus

Omega Centauri is a globular cluster in the constellation of Centaurus that was first identified as a non-stellar object by Edmond Halley in 1677. Located at a distance of 17,090 light-years, it is the largest known globular cluster in the Milky Way at a diameter of roughly 150 light-years. It is estimated to contain approximately 10 million stars, with a total mass of 4 million solar masses, making it the most massive known globular cluster in the Milky Way.

<span class="mw-page-title-main">Messier 90</span> Galaxy in the constellation Virgo

Messier 90 is an intermediate spiral galaxy exhibiting a weak inner ring structure about 60 million light-years away[a] in the constellation Virgo. It was discovered by Charles Messier in 1781.

<span class="mw-page-title-main">Messier 95</span> Galaxy in the constellation Leo

Messier 95, also known as M95 or NGC 3351, is a barred spiral galaxy about 33 million light-years away in the zodiac constellation Leo. It was discovered by Pierre Méchain in 1781, and catalogued by compatriot Charles Messier four days later. In 2012 its most recent supernova was discovered.

<span class="mw-page-title-main">Sculptor Galaxy</span> Intermediate spiral galaxy in the constellation Sculptor

The Sculptor Galaxy is an intermediate spiral galaxy in the constellation Sculptor. The Sculptor Galaxy is a starburst galaxy, which means that it is currently undergoing a period of intense star formation.

<span class="mw-page-title-main">NGC 2366</span> Galaxy in the constellation Camelopardalis

NGC 2366 is a Magellanic barred irregular dwarf galaxy located in the constellation Camelopardalis.

<span class="mw-page-title-main">HXMM01</span> Galaxy in the constellation Cetus

HXMM01, known more formally as 1HERMES S250 J022016.5−060143, is a starburst galaxy located in the northwestern portion of the constellation Cetus. Discovered in 2013 by a team at the University of California, Irvine, it was discovered that HXMM01 is actually still forming from its two parent galaxies as part of the "brightest, most luminous and most gas-rich submillimeter-bright galaxy merger known." When the merger is complete, HXMM01 will rapidly evolve to become a giant elliptical galaxy with a mass about four times that of the Milky Way. As of 2013, HXMM01 has been observed to form about 2,000 M of stars every year, with an efficiency ten times greater than that of typical galaxies and far more than the Milky Way's 0.68–1.45 M per year.

References

  1. "NOAO: NGC 6334 – A Mini Starburst Region? |". noirlab.edu. Retrieved 2021-04-15.
  2. Robitaille, Thomas; Whitney, Barbara (2010). "The present-day star formation rate of the Milky-Way determined from Spitzer detected young stellar objects". The Astrophysical Journal. 710 (1): L11–L15. arXiv: 1001.3672 . Bibcode:2010ApJ...710L..11R. doi:10.1088/2041-8205/710/1/L11.
  3. 1 2 3 4 Sparke, Linda; Gallagher, John III (2007). Galaxies in the Universe. New York: Cambridge University Press. p. 289. ISBN   978-0-521-67186-6.
  4. Lebouteiller, V.; Bernard-Salas, J.; Brandl, B.; Whelan, D. G.; Wu, Y.; Charmandaris, V.; Devost, D.; Houck, J. R. (2008-06-10). "Chemical composition and mixing in giant HII regions: NGC3603, 30Doradus, and N66". The Astrophysical Journal. 680 (1): 398–419. arXiv: 0710.4549 . Bibcode:2008ApJ...680..398L. doi:10.1086/587503. ISSN   0004-637X.
  5. C. Muñoz-Tuñón; N. Caon; J. Aguerri; L. Alfonso (2004). "The Inner Ring of NGC 4736: Star Formation on a Resonant Pattern". Astronomical Journal . 127 (1): 58–74. Bibcode:2004AJ....127...58M. doi: 10.1086/380610 .