Starlingpox

Last updated
Starlingpox virus
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Varidnaviria
Kingdom: Bamfordvirae
Phylum: Nucleocytoviricota
Class: Pokkesviricetes
Order: Chitovirales
Family: Poxviridae
Genus: Avipoxvirus
Species:
Starlingpox virus

Starlingpox virus is a branch of the Avipoxvirus belonging to the Chordopoxvirinae subfamily and the Poxviridae family, impacting various starling songbird species (Weli and Tryland 2011). [1] The starling variant, Starlingpox virus has been linked to another variant, the Mynahpox virus , supporting theorizations that each variation belongs to a subclade, Sturnindaepox virus (Gyuranecz, et al. 2013). [2] Avian pox viruses are widespread, double-stranded, DNA genome viruses that have been found in cutaneous and diphtheritic forms in over 230 bird species (Jarmin, et al., 2006). [3]

Contents

Signs and symptoms

The virus presents with "dry", cutaneous, "wart-like" lesions that may cause vision impairments and trouble eating, or "wet", diphtheritic lesions that may disrupt respiration or lead to secondary bacterial or fungal infections (Lawson, et al., 2012). [4] The most well-known symptoms are lesions on the head, concentrated around the eyes and base of the beak (Bateson and Asher, 2010). [5] Infected birds often have crusted or nodular regions on areas of skin without feathers, including the feet (Axelson 2022). [6] Other common symptoms of avipoxviruses include difficulty breathing, conjunctivitis, emaciation, difficulty swallowing, and weakness (Michigan.gov 2022.) [7] Virus particles may aerosolize and be transmitted via inhalation or remain active in dried scabs for years (Wildlife Futures Program, 2021). [8] The prevalence of symptoms depends on the route of exposure (Jarmin, et al, 2006). [9]

Transmission

Transmission occurs through contact with vectors or other infected birds. Several species of arthropods, like the Culex quinquefasciatus and Ades aegypti , act as mechanical vectors for avipoxvirus transmission (Sores van der Meer, et al., 2022). [10] Infected mosquitos are capable of spreading the virus to uninfected birds for more than one month, while infected birds will spread the virus through direct contact with food or water sources and contaminated perches or feeders (Michigan.gov 2022). [7] Virus particles may aerosolize and be transmitted via inhalation or remain active in dried scabs for years (Wildlife Futures Program, 2021). [8] The prevalence of symptoms depends on the route of exposure (Jarmin, et al., 2006). [3]

Diagnosis and treatment

A positive diagnosis of avian pox virus within a population, or for an individual bird, can be challenging to reach because visual observations of pox lesions may be hard to obtain or may not develop at all (Galvin, et al., 2022). [11] Current diagnostic methods that work alongside visual identification include electron microscopy, histopathology examinations, virus isolation, PCR sequencing, and necropsy (Jarmin, et al., 2006). [3] There are no definitive treatments due to species and virus variations, though general supportive measures like mineral supplements, probiotics, and vitamins are used to aid in recovery processes (Corvid Isle, 2021). [12]

Prevention and management

Efforts to control and prevent the spread of avian pox viruses in wild populations involve the elimination of mosquito breeding locations, gathering site disinfection, and domestic bird vaccine distribution (Wildlife Futures Program, 2021 [8] ). When applicable, domestic poultry owners are advised to avoid sharing farm equipment with others, disinfect equipment as needed, and quarantine any birds that return after leaving the flock for up to 30 days (University of Minnesota Extension, 2022). [13] Additional measures to mitigate the spread among wild populations include so-called "bird-table hygiene recommendations" like providing fresh drinking water each day, rotating garden feeders, and removal of old food, which are thought to disrupt disease transmission in areas where virus concentrations are high (Corvid Isle, 2021). [12]

Related Research Articles

<span class="mw-page-title-main">Chikungunya</span> Infection caused by the Chikungunya virus

Chikungunya is an infection caused by the Chikungunya virus (CHIKV). The disease was first identified in 1952 in Tanzania and named based on the Kimakonde words for "to become contorted". Symptoms include fever and joint pain. These typically occur two to twelve days after exposure. Other symptoms may include headache, muscle pain, joint swelling, and a rash. Symptoms usually improve within a week; however, occasionally the joint pain may last for months or years. The risk of death is around 1 in 1,000. The very young, old, and those with other health problems are at risk of more severe disease.

<span class="mw-page-title-main">Kyasanur Forest disease</span> Human disease

Kyasanur forest disease (KFD) is a tick-borne viral haemorrhagic fever endemic to South-western part of India. The disease is caused by a virus belonging to the family Flaviviridae. KFDV is transmitted to humans through the bite of infected hard ticks which act as a reservoir of KFDV.

Avian coronavirus is a species of virus from the genus Gammacoronavirus that infects birds; since 2018, all gammacoronaviruses which infect birds have been classified as this single species. The strain of avian coronavirus previously known as infectious bronchitis virus (IBV) is the only coronavirus that infects chickens. It causes avian infectious bronchitis, a highly infectious disease that affects the respiratory tract, gut, kidney and reproductive system. IBV affects the performance of both meat-producing and egg-producing chickens and is responsible for substantial economic loss within the poultry industry. The strain of avian coronavirus previously classified as Turkey coronavirus causes gastrointestinal disease in turkeys.

Marek's disease is a highly contagious viral neoplastic disease in chickens. It is named after József Marek, a Hungarian veterinarian who described it in 1907. Marek's disease is caused by an alphaherpesvirus known as "Marek's disease virus" (MDV) or Gallid alphaherpesvirus 2 (GaHV-2). The disease is characterized by the presence of T cell lymphoma as well as infiltration of nerves and organs by lymphocytes. Viruses related to MDV appear to be benign and can be used as vaccine strains to prevent Marek's disease. For example, the related herpesvirus found in turkeys (HVT), causes no apparent disease in the birds, and continues to be used as a vaccine strain for prevention of Marek's disease.

<span class="mw-page-title-main">Influenza A virus subtype H9N2</span> Virus subtype

Influenza A virus subtype H9N2 (A/H9N2) is a subtype of the species Influenza A virus . Since 1998 a total of 86 cases of human infection with H9N2 viruses have been reported.

<span class="mw-page-title-main">Astrovirus</span> Family of viruses

Astroviruses (Astroviridae) are a type of virus that was first discovered in 1975 using electron microscopes following an outbreak of diarrhea in humans. In addition to humans, astroviruses have now been isolated from numerous mammalian animal species and from avian species such as ducks, chickens, and turkey poults. Astroviruses are 28–35 nm diameter, icosahedral viruses that have a characteristic five- or six-pointed star-like surface structure when viewed by electron microscopy. Along with the Picornaviridae and the Caliciviridae, the Astroviridae comprise a third family of nonenveloped viruses whose genome is composed of plus-sense, single-stranded RNA. Astrovirus has a non-segmented, single stranded, positive sense RNA genome within a non-enveloped icosahedral capsid. Human astroviruses have been shown in numerous studies to be an important cause of gastroenteritis in young children worldwide. In animals, Astroviruses also cause infection of the gastrointestinal tract but may also result in encephalitis, hepatitis (avian) and nephritis (avian).

<span class="mw-page-title-main">Psittacine beak and feather disease</span> Viral disease affecting parrots

Psittacine beak and feather disease (PBFD) is a viral disease affecting all Old World and New World parrots. The causative virus—beak and feather disease virus (BFDV)—belongs to the taxonomic genus Circovirus, family Circoviridae. It attacks the feather follicles and the beak and claw matrices of the bird, causing progressive feather, claw and beak malformation and necrosis. In later stages of the disease, feather shaft constriction occurs, hampering development until eventually all feather growth stops. It occurs in an acutely fatal form and a chronic form.

<span class="mw-page-title-main">Duck plague</span> Disease caused by Anatid alphaherpesvirus 1

Duck plague is a worldwide disease caused by Anatid alphaherpesvirus 1 (AnHV-1) of the family Herpesviridae that causes acute disease with high mortality rates in flocks of ducks, geese, and swans. It is spread both vertically and horizontally—through contaminated water and direct contact. Migratory waterfowl are a major factor in the spread of this disease as they are often asymptomatic carriers of disease. The incubation period is three to seven days. Birds as young as one week old can be infected. DEV is not zoonotic.

<span class="mw-page-title-main">Fowlpox</span> Viral disease of poultry

Fowlpox is the worldwide disease of poultry caused by viruses of the family Poxviridae and the genus Avipoxvirus. The viruses causing fowlpox are distinct from one another but antigenically similar, possible hosts including chickens, turkeys, quail, canaries, pigeons, and many other species of birds. There are two forms of the disease. The first is spread by biting insects and wound contamination, and causes lesions on the comb, wattles, and beak. Birds affected by this form usually recover within a few weeks. The second is contracted by inhalation or ingestion of the virus via dust or aerosols, leading to the 'diphtheritic form' of the disease, in which diphtheritic membranes form in the mouth, pharynx, larynx, and sometimes the trachea. The prognosis for this form is poor.

<span class="mw-page-title-main">Canarypox</span> Viral disease of birds

Canarypox virus (CNPV) is an Avipoxvirus and etiologic agent of canarypox, a disease of wild and captive birds that can cause significant losses. Canarypox can enter human cells, but it cannot survive and multiply in human cells. There is a live viral vaccine available which may have beneficial properties against human cancer when used as a mammalian expression vector.. Furthermore, the POXIMUNE® C vaccine does offer direct protection against CNPV in susceptible birds.

Avipoxvirus is a genus of viruses within the family Poxviridae. Poxviridae is the family of viruses which cause the afflicted organism to have poxes as a symptom. Poxviruses have generally large genomes, and other such examples include smallpox and monkeypox. Members of the genus Avipoxvirus infect specifically birds. Avipoxviruses are unable to complete their replication cycle in non-avian species. Although it is comparably slow-spreading, Avipoxvirus is known to cause symptoms like pustules full of pus lining the skin and diphtheria-like symptoms. These diphtheria-like symptoms might include diphtheric necrotic membranes lining the mouth and the upper respiratory tract. Like other avian viruses, it can be transmitted through vectors mechanically such as through mosquitoes. There is no evidence that this virus can infect humans.

Turkeypox virus is a virus of the family Poxviridae and the genus Avipoxvirus that causes turkeypox. It is one of the most common diseases in the wild turkey population. Turkeypox, like all avipoxviruses, is transmitted either through skin contact or by arthropods acting as mechanical vectors.

<span class="mw-page-title-main">Chickenpox</span> Human viral disease

Chickenpox, or chicken pox, also known as varicella, is a highly contagious, vaccine-preventable disease caused by the initial infection with varicella zoster virus (VZV), a member of the herpesvirus family. The disease results in a characteristic skin rash that forms small, itchy blisters, which eventually scab over. It usually starts on the chest, back, and face. It then spreads to the rest of the body. The rash and other symptoms, such as fever, tiredness, and headaches, usually last five to seven days. Complications may occasionally include pneumonia, inflammation of the brain, and bacterial skin infections. The disease is usually more severe in adults than in children.

In 2008, by pyrosequencing of cDNA from the brains of several parrots suffering from proventricular dilatation disease (PDD), Honkavuori et al. identified the presence of a novel bornavirus.

Avian orthoreovirus, also known as avian reovirus, is an orthoreovirus from the Reoviridae family. Infection causes arthritis and tenosynovitis in poultry. It can also cause respiratory disease.

Pacheco's disease is a highly infectious and acute bird disease caused by a species of herpesvirus, Psittacid alphaherpesvirus 1 (PsHV-1). All psittacine species are susceptible to Pacheco's disease, mainly those in zoological collections and aviaries in any geographic regions. Specifically, Pacheco's disease has a high occurrence rate in Amazon parrots, followed by African grey parrots, parrots, macaws, cockatoos and conures. Due to a very high mortality rate within these susceptible species, concerns are brought to companion bird markets and breeders.

<i>Monkeypox virus</i> Species of double-stranded DNA virus

The monkeypox virus, is a species of double-stranded DNA virus that causes mpox disease in humans and other mammals. The monkeypox virus is a zoonotic virus belonging to the orthopoxvirus genus, making it closely related to the variola, cowpox, and vaccinia viruses. MPV is oval-shaped with a lipoprotein outer membrane. The genome is approximately 190 kb.

Pseudocowpox is a disease caused by the Paravaccinia virus or Pseudocowpox virus, a virus of the family Poxviridae and the genus Parapoxvirus. Humans can contract the virus from contact with livestock infected with Bovine papular stomatitis and the disease is common among ranchers, milkers, and veterinarians. Infection in humans will present with fever, fatigue, and lesion on the skin.

<i>West Nile virus</i> Species of flavivirus causing West Nile fever

West Nile virus (WNV) is a single-stranded RNA virus that causes West Nile fever. It is a member of the family Flaviviridae, from the genus Flavivirus, which also contains the Zika virus, dengue virus, and yellow fever virus. The virus is primarily transmitted by mosquitoes, mostly species of Culex. The primary hosts of WNV are birds, so that the virus remains within a "bird–mosquito–bird" transmission cycle. The virus is genetically related to the Japanese encephalitis family of viruses. Humans and horses both exhibit disease symptoms from the virus, and symptoms rarely occur in other animals.

<i>Avian metaavulavirus 2</i> Species of virus

Avian metaavulavirus 2, formerly Avian paramyxovirus 2, is a species of virus belonging to the family Paramyxoviridae and genus Metaavulavirus. The virus is a negative strand RNA virus containing a monopartite genome. Avian metaavulavirus 2 is one of nine species belonging to the genus Metaavulavirus. The most common serotype of Avulavirinae is serotype 1, the cause of Newcastle disease (ND). Avian metaavulavirus 2 has been known to cause disease, specifically mild respiratory infections in domestic poultry, including turkeys and chickens, and has many economic effects on egg production and poultry industries. The virus was first isolated from a strain in Yucaipa, California in 1956. Since then, other isolates of the virus have been isolated worldwide.

References

  1. Weli, Simon C; Tryland, Morten (December 2011). "Avipoxviruses: infection biology and their use as vaccine vectors". Virology Journal. 8 (1): 49. doi: 10.1186/1743-422X-8-49 . ISSN   1743-422X. PMC   3042955 . PMID   21291547.
  2. Gyuranecz, Miklós; Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela (May 2013). "Worldwide Phylogenetic Relationship of Avian Poxviruses". Journal of Virology. 87 (9): 4938–4951. doi:10.1128/JVI.03183-12. ISSN   0022-538X. PMC   3624294 . PMID   23408635.
  3. 1 2 3 Jarmin, Susan; Manvell, Ruth; Gough, Richard E.; Laidlaw, Stephen M.; Skinner, Michael A.YR 2006 (2006). "Avipoxvirus phylogenetics: identification of a PCR length polymorphism that discriminates between the two major clades". Journal of General Virology. 87 (8): 2191–2201. doi: 10.1099/vir.0.81738-0 . ISSN   1465-2099. PMID   16847115.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  4. Lawson, Becki; Lachish, Shelly; Colvile, Katie M.; Durrant, Chris; Peck, Kirsi M.; Toms, Mike P.; Sheldon, Ben C.; Cunningham, Andrew A. (2012-11-21). "Emergence of a Novel Avian Pox Disease in British Tit Species". PLOS ONE. 7 (11): e40176. Bibcode:2012PLoSO...740176L. doi: 10.1371/journal.pone.0040176 . ISSN   1932-6203. PMC   3504035 . PMID   23185231.
  5. Bateson, Melissa; Asher, Lucy (2010), "The European Starling", The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals, Oxford, UK: Wiley-Blackwell, pp. 697–705, doi:10.1002/9781444318777.ch45, ISBN   9781444318777 , retrieved 2022-11-18
  6. "Pox Virus Infection in Birds | VCA Animal Hospital". Vca. Retrieved 2022-11-18.
  7. 1 2 "Avian Pox". www.michigan.gov. Retrieved 2022-11-18.
  8. 1 2 3 "Penn Vet | Fact Sheet Detail". www.vet.upenn.edu. Retrieved 2022-11-18.
  9. Jarmin, Susan; Manvell, Ruth; Gough, Richard E.; Laidlaw, Stephen M.; Skinner, Michael A.YR 2006 (2006). "Avipoxvirus phylogenetics: identification of a PCR length polymorphism that discriminates between the two major clades". Journal of General Virology. 87 (8): 2191–2201. doi: 10.1099/vir.0.81738-0 . ISSN   1465-2099. PMID   16847115.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  10. van der Meer, Carolina Soares; Paulino, Patrícia Gonzaga; Jardim, Talys Henrique Assumpção; Senne, Nathália Alves; Araujo, Thamires Rezende; dos Santos Juliano, Daniele; Massard, Carlos Luiz; Peixoto, Maristela Peckle; da Costa Angelo, Isabele; Santos, Huarrisson Azevedo (2022-08-05). "Detection and molecular characterization of Avipoxvirus in Culex spp. (Culicidae) captured in domestic areas in Rio de Janeiro, Brazil". Scientific Reports. 12 (1): 13496. Bibcode:2022NatSR..1213496V. doi:10.1038/s41598-022-17745-4. ISSN   2045-2322. PMC   9355968 . PMID   35931728.
  11. Galvin, Aoife N.; Pandit, Pranav S.; English, Simon G.; Quock, Rachel C.; Bandivadekar, Ruta R.; Colwell, Rita R.; Robinson, Barbara W.; Ernest, Holly B.; Brown, Mollie H.; Sehgal, Ravinder N. M.; Tell, Lisa A. (2022). "Evaluation of minimally invasive sampling methods for detecting Avipoxvirus: Hummingbirds as a case example". Frontiers in Veterinary Science. 9: 924854. doi: 10.3389/fvets.2022.924854 . ISSN   2297-1769. PMC   9450938 . PMID   36090172.
  12. 1 2 Rook (2021-03-21). "Treatment of Avian Pox". Corvid Isle. Retrieved 2022-11-18.
  13. "Avian influenza basics for urban and backyard poultry owners". extension.umn.edu. Retrieved 2022-11-18.