Steenrod problem

Last updated

In mathematics, and particularly homology theory, Steenrod's Problem (named after mathematician Norman Steenrod) is a problem concerning the realisation of homology classes by singular manifolds. [1]

Contents

Formulation

Let be a closed, oriented manifold of dimension , and let be its orientation class. Here denotes the integral, -dimensional homology group of . Any continuous map defines an induced homomorphism . [2] A homology class of is called realisable if it is of the form where . The Steenrod problem is concerned with describing the realisable homology classes of . [3]

Results

All elements of are realisable by smooth manifolds provided . Moreover, any cycle can be realized by the mapping of a pseudo-manifold. [3]

The assumption that M be orientable can be relaxed. In the case of non-orientable manifolds, every homology class of , where denotes the integers modulo 2, can be realized by a non-oriented manifold, . [3]

Conclusions

For smooth manifolds M the problem reduces to finding the form of the homomorphism , where is the oriented bordism group of X. [4] The connection between the bordism groups and the Thom spaces MSO(k) clarified the Steenrod problem by reducing it to the study of the homomorphisms . [3] [5] In his landmark paper from 1954, [5] René Thom produced an example of a non-realisable class, , where M is the Eilenberg–MacLane space .

See also

Related Research Articles

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov-Witten invariants.

The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics.

In mathematics, particularly algebraic topology and homology theory, the Mayer–Vietoris sequence is an algebraic tool to help compute algebraic invariants of topological spaces, known as their homology and cohomology groups. The result is due to two Austrian mathematicians, Walther Mayer and Leopold Vietoris. The method consists of splitting a space into subspaces, for which the homology or cohomology groups may be easier to compute. The sequence relates the (co)homology groups of the space to the (co)homology groups of the subspaces. It is a natural long exact sequence, whose entries are the (co)homology groups of the whole space, the direct sum of the (co)homology groups of the subspaces, and the (co)homology groups of the intersection of the subspaces.

In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four.

<span class="mw-page-title-main">Cobordism</span>

In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher.

In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if M is an n-dimensional oriented closed manifold, then the kth cohomology group of M is isomorphic to the th homology group of M, for all integers k

In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to n, where n is the rank of the vector bundle. If the Stiefel–Whitney class of index i is nonzero, then there cannot exist everywhere linearly independent sections of the vector bundle. A nonzero nth Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, , is zero.

In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold M in terms of connections and curvature representing classes in the de Rham cohomology rings of M. That is, the theory forms a bridge between the areas of algebraic topology and differential geometry. It was developed in the late 1940s by Shiing-Shen Chern and André Weil, in the wake of proofs of the generalized Gauss–Bonnet theorem. This theory was an important step in the theory of characteristic classes.

In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.

In mathematics, the Thom space,Thom complex, or Pontryagin–Thom construction of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space.

In algebraic topology, a Steenrod algebra was defined by Henri Cartan (1955) to be the algebra of stable cohomology operations for mod cohomology.

In mathematics, more particularly in functional analysis, differential topology, and geometric measure theory, a k-current in the sense of Georges de Rham is a functional on the space of compactly supported differential k-forms, on a smooth manifold M. Currents formally behave like Schwartz distributions on a space of differential forms, but in a geometric setting, they can represent integration over a submanifold, generalizing the Dirac delta function, or more generally even directional derivatives of delta functions (multipoles) spread out along subsets of M.

The Novikov conjecture is one of the most important unsolved problems in topology. It is named for Sergei Novikov who originally posed the conjecture in 1965.

<span class="mw-page-title-main">Degree of a continuous mapping</span>

In topology, the degree of a continuous mapping between two compact oriented manifolds of the same dimension is a number that represents the number of times that the domain manifold wraps around the range manifold under the mapping. The degree is always an integer, but may be positive or negative depending on the orientations.

In differential topology, an area of mathematics, the Hirzebruch signature theorem is Friedrich Hirzebruch's 1954 result expressing the signature of a smooth closed oriented manifold by a linear combination of Pontryagin numbers called the L-genus. It was used in the proof of the Hirzebruch–Riemann–Roch theorem.

In differential topology, a branch of mathematics, a stratifold is a generalization of a differentiable manifold where certain kinds of singularities are allowed. More specifically a stratifold is stratified into differentiable manifolds of (possibly) different dimensions. Stratifolds can be used to construct new homology theories. For example, they provide a new geometric model for ordinary homology. The concept of stratifolds was invented by Matthias Kreck. The basic idea is similar to that of a topologically stratified space, but adapted to differential topology.

This is a glossary of properties and concepts in algebraic topology in mathematics.

References

  1. Eilenberg, Samuel (1949). "On the problems of topology". Annals of Mathematics . 50 (2): 247–260. doi:10.2307/1969448. JSTOR   1969448.
  2. Hatcher, Allen (2001), Algebraic Topology, Cambridge University Press, ISBN   0-521-79540-0
  3. 1 2 3 4 Encyclopedia of Mathematics. "Steenrod Problem" . Retrieved October 29, 2020.
  4. Rudyak, Yuli B. (1987). "Realization of homology classes of PL-manifolds with singularities". Mathematical Notes . 41 (5): 417–421. doi:10.1007/bf01159869. S2CID   122228542.
  5. 1 2 Thom, René (1954). "Quelques propriétés globales des variétés differentiable". Commentarii Mathematici Helvetici (in French). 28: 17–86. doi:10.1007/bf02566923. S2CID   120243638.