Steinberg symbol

Last updated

In mathematics a Steinberg symbol is a pairing function which generalises the Hilbert symbol and plays a role in the algebraic K-theory of fields. It is named after mathematician Robert Steinberg.

Contents

For a field F we define a Steinberg symbol (or simply a symbol) to be a function , where G is an abelian group, written multiplicatively, such that

The symbols on F derive from a "universal" symbol, which may be regarded as taking values in . By a theorem of Matsumoto, this group is and is part of the Milnor K-theory for a field.

Properties

If (⋅,⋅) is a symbol then (assuming all terms are defined)

Examples

Continuous symbols

If F is a topological field then a symbol c is weakly continuous if for each y in F the set of x in F such that c(x,y) = 1 is closed in F. This makes no reference to a topology on the codomain G. If G is a topological group, then one may speak of a continuous symbol, and when G is Hausdorff then a continuous symbol is weakly continuous. [3]

The only weakly continuous symbols on R are the trivial symbol and the Hilbert symbol: the only weakly continuous symbol on C is the trivial symbol. [4] The characterisation of weakly continuous symbols on a non-Archimedean local field F was obtained by Moore. The group K2(F) is the direct sum of a cyclic group of order m and a divisible group K2(F)m. A symbol on F lifts to a homomorphism on K2(F) and is weakly continuous precisely when it annihilates the divisible component K2(F)m. It follows that every weakly continuous symbol factors through the norm residue symbol. [5]

See also

Related Research Articles

Associative algebra Algebraic structure with (a + b)(c + d) = ac + ad + bc + bd and (a)(bc) = (ab)(c)

In mathematics, an associative algebra is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.

Integral domain Commutative ring with no zero divisors other than zero

In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

In mathematics, the tensor productVW of two vector spaces V and W is a vector space, endowed with a bilinear map from the Cartesian product V × W to VW. This bilinear map is universal in the sense that, for every vector space X, the bilinear maps from V × W to X are in one to one correspondence with the linear maps from VW to X.

In mathematics, coalgebras or cogebras are structures that are dual to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions.

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously a algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

In mathematics, a universal enveloping algebra is the most general algebra that contains all representations of a Lie algebra.

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.

In mathematics, specifically in functional analysis, each bounded linear operator on a complex Hilbert space has a corresponding Hermitian adjoint. Adjoints of operators generalize conjugate transposes of square matrices to (possibly) infinite-dimensional situations. If one thinks of operators on a complex Hilbert space as generalized complex numbers, then the adjoint of an operator plays the role of the complex conjugate of a complex number.

In abstract algebra, Hilbert's Theorem 90 is an important result on cyclic extensions of fields that leads to Kummer theory. In its most basic form, it states that if L/K is an extension of fields with cyclic Galois group G = Gal(L/K) generated by an element and if is an element of L of relative norm 1, that is

In mathematics, and in particular functional analysis, the tensor product of Hilbert spaces is a way to extend the tensor product construction so that the result of taking a tensor product of two Hilbert spaces is another Hilbert space. Roughly speaking, the tensor product is the metric space completion of the ordinary tensor product. This is an example of a topological tensor product. The tensor product allows Hilbert spaces to be collected into a symmetric monoidal category.

In mathematics, Milnor K-theory is an algebraic invariant defined by John Milnor (1970) as an attempt to study higher algebraic K-theory in the special case of fields. It was hoped this would help illuminate the structure for algebraic K-theory and give some insight about its relationships with other parts of mathematics, such as Galois cohomology and the Grothendieck–Witt ring of quadratic forms. Before Milnor K-theory was defined, there existed ad-hoc definitions for and . Fortunately, it can be shown Milnor K-theory is a part of algebraic K-theory, which in general is the easiest part to compute.

In mathematics, the Noether normalization lemma is a result of commutative algebra, introduced by Emmy Noether in 1926. It states that for any field k, and any finitely generated commutative k-algebraA, there exists a non-negative integer d and algebraically independent elements y1, y2, ..., yd in A such that A is a finitely generated module over the polynomial ring S = k [y1, y2, ..., yd].

In mathematics, an Azumaya algebra is a generalization of central simple algebras to R-algebras where R need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where R is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.

In mathematics, a Witt group of a field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear forms over the field.

In mathematics, the Hilbert symbol or norm-residue symbol is a function from K× × K× to the group of nth roots of unity in a local field K such as the fields of reals or p-adic numbers. It is related to reciprocity laws, and can be defined in terms of the Artin symbol of local class field theory. The Hilbert symbol was introduced by David Hilbert in his Zahlbericht, with the slight difference that he defined it for elements of global fields rather than for the larger local fields.

In mathematics, a Pfister form is a particular kind of quadratic form, introduced by Albrecht Pfister in 1965. In what follows, quadratic forms are considered over a field F of characteristic not 2. For a natural number n, an n-fold Pfister form over F is a quadratic form of dimension 2n that can be written as a tensor product of quadratic forms

In mathematics, the group Hopf algebra of a given group is a certain construct related to the symmetries of group actions. Deformations of group Hopf algebras are foundational in the theory of quantum groups.

In mathematics, the Babuška–Lax–Milgram theorem is a generalization of the famous Lax–Milgram theorem, which gives conditions under which a bilinear form can be "inverted" to show the existence and uniqueness of a weak solution to a given boundary value problem. The result is named after the mathematicians Ivo Babuška, Peter Lax and Arthur Milgram.

In mathematics, the norm residue isomorphism theorem is a long-sought result relating Milnor K-theory and Galois cohomology. The result has a relatively elementary formulation and at the same time represents the key juncture in the proofs of many seemingly unrelated theorems from abstract algebra, theory of quadratic forms, algebraic K-theory and the theory of motives. The theorem asserts that a certain statement holds true for any prime and any natural number . John Milnor speculated that this theorem might be true for and all , and this question became known as Milnor's conjecture. The general case was conjectured by Spencer Bloch and Kazuya Kato and became known as the Bloch–Kato conjecture or the motivic Bloch–Kato conjecture to distinguish it from the Bloch–Kato conjecture on values of L-functions. The norm residue isomorphism theorem was proved by Vladimir Voevodsky using a number of highly innovative results of Markus Rost.

In mathematics, the automorphism group of an object X is the group consisting of automorphisms of X. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the general linear group of X, the group of invertible linear transformations from X to itself.

References

  1. Serre, Jean-Pierre (1996). A Course in Arithmetic. Graduate Texts in Mathematics. 7. Berlin, New York: Springer-Verlag. ISBN   978-3-540-90040-5.
  2. Milnor (1971) p.94
  3. Milnor (1971) p.165
  4. Milnor (1971) p.166
  5. Milnor (1971) p.175