In computational complexity theory of computer science, the structural complexity theory or simply structural complexity is the study of complexity classes, rather than computational complexity of individual problems and algorithms. It involves the research of both internal structures of various complexity classes and the relations between different complexity classes. [1]
The theory has emerged as a result of (still failing) attempts to resolve the first and still the most important question of this kind, the P = NP problem. Most of the research is done basing on the assumption of P not being equal to NP and on a more far-reaching conjecture that the polynomial time hierarchy of complexity classes is infinite. [1]
The compression theorem is an important theorem about the complexity of computable functions.
The theorem states that there exists no largest complexity class, with computable boundary, which contains all computable functions.
The space hierarchy theorems are separation results that show that both deterministic and nondeterministic machines can solve more problems in (asymptotically) more space, subject to certain conditions. For example, a deterministic Turing machine can solve more decision problems in space n log n than in space n. The somewhat weaker analogous theorems for time are the time hierarchy theorems.
The time hierarchy theorems are important statements about time-bounded computation on Turing machines. Informally, these theorems say that given more time, a Turing machine can solve more problems. For example, there are problems that can be solved with n2 time but not n time.
The Valiant–Vazirani theorem is a theorem in computational complexity theory. It was proven by Leslie Valiant and Vijay Vazirani in their paper titled NP is as easy as detecting unique solutions published in 1986. [2] The theorem states that if there is a polynomial time algorithm for Unambiguous-SAT, then NP=RP. The proof is based on the Mulmuley–Vazirani isolation lemma, which was subsequently used for a number of important applications in theoretical computer science.
The Sipser–Lautemann theorem or Sipser–Gács–Lautemann theorem states that Bounded-error Probabilistic Polynomial (BPP) time, is contained in the polynomial time hierarchy, and more specifically Σ2 ∩ Π2.
Savitch's theorem, proved by Walter Savitch in 1970, gives a relationship between deterministic and non-deterministic space complexity. It states that for any function ,
Toda's theorem is a result that was proven by Seinosuke Toda in his paper "PP is as Hard as the Polynomial-Time Hierarchy" (1991) and was given the 1998 Gödel Prize. The theorem states that the entire polynomial hierarchy PH is contained in PPP; this implies a closely related statement, that PH is contained in P#P.
The Immerman–Szelepcsényi theorem was proven independently by Neil Immerman and Róbert Szelepcsényi in 1987, for which they shared the 1995 Gödel Prize. In its general form the theorem states that NSPACE(s(n)) = co-NSPACE(s(n)) for any function s(n) ≥ log n. The result is equivalently stated as NL = co-NL; although this is the special case when s(n) = log n, it implies the general theorem by a standard padding argument [ citation needed ]. The result solved the second LBA problem.
Major directions of research in this area include: [1]
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm.
In computational complexity theory, NP is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.
In computational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space.
In computational complexity theory, the complexity class EXPTIME (sometimes called EXP or DEXPTIME) is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2p(n)) time, where p(n) is a polynomial function of n.
In computational complexity theory, EXPSPACE is the set of all decision problems solvable by a deterministic Turing machine in exponential space, i.e., in space, where is a polynomial function of . Some authors restrict to be a linear function, but most authors instead call the resulting class ESPACE. If we use a nondeterministic machine instead, we get the class NEXPSPACE, which is equal to EXPSPACE by Savitch's theorem.
In computational complexity theory, the time hierarchy theorems are important statements about time-bounded computation on Turing machines. Informally, these theorems say that given more time, a Turing machine can solve more problems. For example, there are problems that can be solved with n2 time but not n time.
The space complexity of an algorithm or a computer program is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it executes completely. This includes the memory space used by its inputs, called input space, and any other (auxiliary) memory it uses during execution, which is called auxiliary space.
In computational complexity theory, a complexity class is a set of computational problems of related resource-based complexity. The two most commonly analyzed resources are time and memory.
In computational complexity theory, Savitch's theorem, proved by Walter Savitch in 1970, gives a relationship between deterministic and non-deterministic space complexity. It states that for any function ,
In computational complexity theory, non-deterministic space or NSPACE is the computational resource describing the memory space for a non-deterministic Turing machine. It is the non-deterministic counterpart of DSPACE.
In computational complexity theory, DSPACE or SPACE is the computational resource describing the resource of memory space for a deterministic Turing machine. It represents the total amount of memory space that a "normal" physical computer would need to solve a given computational problem with a given algorithm.
In computational complexity theory, P, also known as PTIME or DTIME(nO(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time.
In computational complexity theory, the complexity class PH is the union of all complexity classes in the polynomial hierarchy:
In computational complexity theory, the space hierarchy theorems are separation results that show that both deterministic and nondeterministic machines can solve more problems in (asymptotically) more space, subject to certain conditions. For example, a deterministic Turing machine can solve more decision problems in space n log n than in space n. The somewhat weaker analogous theorems for time are the time hierarchy theorems.
In computational complexity theory, an alternating Turing machine (ATM) is a non-deterministic Turing machine (NTM) with a rule for accepting computations that generalizes the rules used in the definition of the complexity classes NP and co-NP. The concept of an ATM was set forth by Chandra and Stockmeyer and independently by Kozen in 1976, with a joint journal publication in 1981.
In computational complexity theory, NL is the complexity class containing decision problems that can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space.
In computational complexity theory, L is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way.
In computational complexity theory, the Immerman–Szelepcsényi theorem states that nondeterministic space complexity classes are closed under complementation. It was proven independently by Neil Immerman and Róbert Szelepcsényi in 1987, for which they shared the 1995 Gödel Prize. In its general form the theorem states that NSPACE(s(n)) = co-NSPACE(s(n)) for any function s(n) ≥ log n. The result is equivalently stated as NL = co-NL; although this is the special case when s(n) = log n, it implies the general theorem by a standard padding argument. The result solved the second LBA problem.
In computer science, st-connectivity or STCON is a decision problem asking, for vertices s and t in a directed graph, if t is reachable from s.
Toda's theorem is a result in computational complexity theory that was proven by Seinosuke Toda in his paper "PP is as Hard as the Polynomial-Time Hierarchy" and was given the 1998 Gödel Prize.