Structures for lossless ion manipulations

Last updated

Structures for lossless ion manipulations (SLIM) are a form of ion optics to which various radio frequency and dc electric potentials can be applied and used to enable a broad range of ion manipulations, such as separations based upon ion mobility spectrometry, reactions (unimolecular, ion-molecule, and ion-ion), and storage (i.e. ion trapping). [1] SLIM was developed by Richard D. Smith and coworkers at Pacific Northwest National Laboratory (PNNL) and are generally fabricated from arrays of electrodes on evenly spaced planar surfaces. [2] In 2017, Erin S. Baker, Sandilya Garimella, Yehia Ibrahim, Richard D. Smith and Ian Webb from the Interactive Omics Group of PNNL received the R&D 100 Award for the development of SLIM. [3] [4]

Contents

In SLIM, ions move in the space between the two surfaces, in directions controlled using electric fields, and also moved between different of multi-level SLIM, as can be constructed from a stack of printed circuit boards (PCBs). The lossless nature of SLIM is derived from the use of rf electric fields, and particularly the pseudo potential derived from the inhomogeneous electric fields resulting from rf of appropriate frequency applied to multiple adjacent electrodes, and that serves to prevent ions from closely approaching the electrodes and surface where loss would conventionally be expected. SLIM are generally used in conjunction with mass spectrometry for analytical applications.

Construction

The first SLIM were fabricated using PCB technology to demonstrate a range of simple ion manipulations in gases at low pressures (a few torr). [5] This SLIM technology has conceptual similarities with integrated electronic circuits, but instead of moving electrons, electric fields were used to create pathways, switches, etc. to manipulate ions in the gas phase.

SLIM devices can enable complex sequences of ion separations, transfers and trapping to occur in the space between two surfaces positioned (e.g., ~4 mm apart) and each patterned with conductive electrodes. The SLIM devices use the inhomogeneous electric fields created by arrays of closely spaced electrodes to which readily generated peak-to-peak RF voltages (e.g., Vp-p ~ 100 V; ~ 1 MHz) are applied with opposite polarity on adjacent electrodes to create effective potential fields that prevent ions from approaching the surfaces. The operating pressure for SLIM devices has initially been reported to be in the 1-10 torr range which allows ions to be effectively confined using the previously defined RF potentials. At higher pressures, the capacity to confine ions diminishes without additional forces being placed on the ion populations.

The confinement functions over a range of pressures (<0.1 torr to ~50 torr), and over an adjustable mass-to-charge ratio (m/z) range (e.g., m/z 200 to >2000). This effective potential works in conjunction with DC potentials applied to side electrodes to prevent ion losses, and allows creating ion traps and conduits in the gap between the two surfaces for the effectively lossless storage and movement of ions as a result of any gradient in the applied DC fields.

The two mirrored halves of a SLIM system are shown in the example to the left. Compared to the longer pathlength systems developed at PNNL, this board is considerably shorter but serves as a rapid prototype. [6] When folded together and spaced ~3 mm apart, the co-planar electrode surfaces create the fields needed for ion confinement and separation.

Mirrored halves of the PCBs comprising a SLIM setup. Example SLIM Boards.jpg
Mirrored halves of the PCBs comprising a SLIM setup.

Related Research Articles

Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.

<span class="mw-page-title-main">Penning trap</span> Device for storing charged particles

A Penning trap is a device for the storage of charged particles using a homogeneous axial magnetic field and an inhomogeneous quadrupole electric field. This kind of trap is particularly well suited to precision measurements of properties of ions and stable subatomic particles, like for example mass, fission yields and isomeric yield ratios. Another example are geonium atoms, which have been created and studied this way, to measure the electron magnetic moment. Recently these traps have been used in the physical realization of quantum computation and quantum information processing by trapping qubits. Penning traps are used in many laboratories worldwide, including CERN, to store antimatter such as antiprotons.

<span class="mw-page-title-main">Glow discharge</span>

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

<span class="mw-page-title-main">Ion trap</span> Device for trapping charged particles

An ion trap is a combination of electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Atomic and molecular ion traps have a number of applications in physics and chemistry such as precision mass spectrometry, improved atomic frequency standards, and quantum computing. In comparison to neutral atom traps, ion traps have deeper trapping potentials that do not depend on the internal electronic structure of a trapped ion. This makes ion traps more suitable for the study of light interactions with single atomic systems. The two most popular types of ion traps are the Penning trap, which forms a potential via a combination of static electric and magnetic fields, and the Paul trap which forms a potential via a combination of static and oscillating electric fields.

<span class="mw-page-title-main">Quadrupole mass analyzer</span>

The quadrupole mass analyzer, originally conceived by Nobel Laureate Wolfgang Paul and his student Helmut Steinwedel, also known as quadrupole mass filter, is one type of mass analyzer used in mass spectrometry. As the name implies, it consists of four cylindrical rods, set parallel to each other. In a quadrupole mass spectrometer (QMS) the quadrupole is the mass analyzer - the component of the instrument responsible for selecting sample ions based on their mass-to-charge ratio (m/z). Ions are separated in a quadrupole based on the stability of their trajectories in the oscillating electric fields that are applied to the rods.

Fourier-transform ion cyclotron resonance mass spectrometry is a type of mass analyzer for determining the mass-to-charge ratio (m/z) of ions based on the cyclotron frequency of the ions in a fixed magnetic field. The ions are trapped in a Penning trap, where they are excited to a larger cyclotron radius by an oscillating electric field orthogonal to the magnetic field. After the excitation field is removed, the ions are rotating at their cyclotron frequency in phase. These ions induce a charge on a pair of electrodes as the packets of ions pass close to them. The resulting signal is called a free induction decay (FID), transient or interferogram that consists of a superposition of sine waves. The useful signal is extracted from this data by performing a Fourier transform to give a mass spectrum.

<span class="mw-page-title-main">Quadrupole ion trap</span>

A quadrupole ion trap or paul trap is a type of ion trap that uses dynamic electric fields to trap charged particles. They are also called radio frequency (RF) traps or Paul traps in honor of Wolfgang Paul, who invented the device and shared the Nobel Prize in Physics in 1989 for this work. It is used as a component of a mass spectrometer or a trapped ion quantum computer.

<span class="mw-page-title-main">Ion mobility spectrometry</span> Analytical technique used to separate and identify ionized molecules in the gas phase

Ion mobility spectrometry (IMS) is an analytical technique used to separate and identify ionized molecules in the gas phase based on their mobility in a carrier buffer gas. Though heavily employed for military or security purposes, such as detecting drugs and explosives, the technique also has many laboratory analytical applications, including the analysis of both small and large biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. Systems operated at higher pressure are often accompanied by elevated temperature, while lower pressure systems (1-20 hPa) do not require heating.

<span class="mw-page-title-main">Orbitrap</span>

In mass spectrometry, Orbitrap is an ion trap mass analyzer consisting of an outer barrel-like electrode and a coaxial inner spindle-like electrode that traps ions in an orbital motion around the spindle. The image current from the trapped ions is detected and converted to a mass spectrum using the Fourier transform of the frequency signal.

In mass spectrometry, direct analysis in real time (DART) is an ion source that produces electronically or vibronically excited-state species from gases such as helium, argon, or nitrogen that ionize atmospheric molecules or dopant molecules. The ions generated from atmospheric or dopant molecules undergo ion-molecule reactions with the sample molecules to produce analyte ions. Analytes with low ionization energy may be ionized directly. The DART ionization process can produce positive or negative ions depending on the potential applied to the exit electrode.

<span class="mw-page-title-main">Field desorption</span>

Field desorption (FD) is a method of ion formation used in mass spectrometry (MS) in which a high-potential electric field is applied to an emitter with a sharp surface, such as a razor blade, or more commonly, a filament from which tiny "whiskers" have formed. This results in a high electric field which can result in ionization of gaseous molecules of the analyte. Mass spectra produced by FD have little or no fragmentation because FD is a soft ionization method. They are dominated by molecular radical cations M+. and less often, protonated molecules . The technique was first reported by Beckey in 1969. It is also the first ionization method to ionize nonvolatile and thermally labile compounds. One major difference of FD with other ionization methods is that it does not need a primary beam to bombard a sample.

<span class="mw-page-title-main">Plasma-enhanced chemical vapor deposition</span>

Plasma-enhanced chemical vapor deposition (PECVD) is a chemical vapor deposition process used to deposit thin films from a gas state (vapor) to a solid state on a substrate. Chemical reactions are involved in the process, which occur after creation of a plasma of the reacting gases. The plasma is generally created by radio frequency (RF) frequency or direct current (DC) discharge between two electrodes, the space between which is filled with the reacting gases.

<span class="mw-page-title-main">Spark ionization</span> Ionization method to produce gas phase ions from a solid sample

Spark ionization is a method used to produce gas phase ions from a solid sample. The prepared solid sample is vaporized and partially ionized by an intermittent discharge or spark. This technique is primarily used in the field of mass spectrometry. When incorporated with a mass spectrometer the complete instrument is referred to as a spark ionization mass spectrometer or as a spark source mass spectrometer (SSMS).

<span class="mw-page-title-main">Ion-mobility spectrometry–mass spectrometry</span>

Ion mobility spectrometry–mass spectrometry (IMS-MS) is an analytical chemistry method that separates gas phase ions based on their interaction with a collision gas and their masses. In the first step, the ions are separated according to their mobility through a buffer gas on a millisecond timescale using an ion mobility spectrometer. The separated ions are then introduced into a mass analyzer in a second step where their mass-to-charge ratios can be determined on a microsecond timescale. The effective separation of analytes achieved with this method makes it widely applicable in the analysis of complex samples such as in proteomics and metabolomics.

<span class="mw-page-title-main">Delayed extraction</span>

Delayed extraction is a method used with a time-of-flight mass spectrometer in which the accelerating voltage is applied after some short time delay following pulsed laser desorption/ionization from a flat surface of target plate or, in other implementation, pulsed electron ionization or Resonance enhanced multiphoton ionization in some narrow space between two plates of the ion extraction system. The extraction delay can produce time-of-flight compensation for ion energy spread and improve mass resolution.

<span class="mw-page-title-main">Linear ion trap</span>

The linear ion trap (LIT) is a type of ion trap mass spectrometer.

Richard Dale Smith is a chemist and a Battelle Fellow and Chief Scientist within the Biological Sciences Division, as well as the Director of Proteomics Research at the Pacific Northwest National Laboratory (PNNL). Dr. Smith is also Director of the NIH Proteomics Research Resource for Integrative Biology, an adjunct faculty member in the chemistry departments at Washington State University and the University of Utah, and an affiliate faculty member at the University of Idaho and the Department of Molecular Microbiology & Immunology, Oregon Health & Science University. He is the author or co-author of approximately 1100 peer-reviewed publications and has been awarded 70 US patents.

<span class="mw-page-title-main">Ion funnel</span>

in mass spectrometry, an ion funnel is a device used to focus a beam of ions using a series of stacked ring electrodes with decreasing inner diameter. A combined radio frequency and fixed electrical potential is applied to the grids. In electrospray ionization-mass spectrometry (ESI-MS), ions are created at atmospheric pressure, but are analyzed at subsequently lower pressures. Ions can be lost while they are shuttled from areas of higher to lower pressure due to the transmission process caused by a phenomenon called joule expansion or “free-jet expansion.” These ion clouds expand outward, which limits the amount of ions that reach the detector, so fewer ions are analyzed. The ion funnel refocuses and transmits ions efficiently from those areas of high to low pressure.

<span class="mw-page-title-main">Digital ion trap</span> Scientific analytical tool

The digital ion trap (DIT) is an quadrupole ion trap driven by digital signals, typically in a rectangular waveform, generated by switching rapidly between discrete DC voltage levels. The digital ion trap has been mainly developed as a mass analyzer.

Erin Shammel Baker is an American bioanalytical chemist, who specializes in the development of ion mobility-mass spectrometry instruments and in biological and environmental applications using these hybrid instruments. Baker is an expert in the research of perfluoroalkyl and polyfluoroalkyl substances analysis.

References

  1. "SLIM ion trapping". PNNL.
  2. Tolmachev, Aleksey V.; Webb, Ian K.; Ibrahim, Yehia M.; Garimella, Sandilya V.B.; Zhang, Xinyu; Anderson, Gordon A.; Smith, Richard D. (2014-09-16). "Characterization of Ion Dynamics in Structures for Lossless Ion Manipulations". Analytical Chemistry. 86 (18): 9162–9168. doi:10.1021/ac502054p. ISSN   0003-2700. PMC   4175726 . PMID   25152178.
  3. "R&D 100 Award Winners Archive". Research & Development World. Retrieved 2022-12-26.
  4. "PNNL: SLIM Wins an R&D 'Oscar'". www.pnnl.gov. Retrieved 2022-12-26.
  5. Webb, Ian K.; Garimella, Sandilya V. B.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Zhang, Xinyu; Norheim, Randolph V.; Prost, Spencer A.; Lamarche, Brian; Anderson, Gordon A.; Ibrahim, Yehia M.; Smith, Richard D. (2014). "Experimental Evaluation and Optimization of Structures for Lossless Ion Manipulations for Ion Mobility Spectrometry with Time-of-Flight Mass Spectrometry". Analytical Chemistry. 86 (18): 9169–9176. doi:10.1021/ac502055e. PMC   4165449 . PMID   25152066.
  6. Kinlein, Zackary R.; Anderson, Gordon A.; Clowers, Brian H. (2022-07-01). "Accelerating prototyping experiments for traveling wave structures for lossless ion manipulations". Talanta. 244: 123446. doi:10.1016/j.talanta.2022.123446. ISSN   0039-9140. PMC  9050921. PMID   35397327.

Further reading