Stub Series Terminated Logic (SSTL) is a group of electrical standards for driving transmission lines commonly used with DRAM based DDR memory IC's and memory modules. SSTL is primarily designed for driving the DDR (double-data-rate) SDRAM modules used in computer memory; however, it is also used in other applications, notably some PCI Express PHYs and other high-speed devices. [1]
In radio-frequency engineering, a transmission line is a specialized cable or other structure designed to conduct alternating current of radio frequency, that is, currents with a frequency high enough that their wave nature must be taken into account. Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas, distributing cable television signals, trunklines routing calls between telephone switching centres, computer network connections and high speed computer data buses.
In computing, a computer bus operating with double data rate (DDR) transfers data on both the rising and falling edges of the clock signal. This is also known as double pumped, dual-pumped, and double transition. The term toggle mode is used in the context of NAND flash memory.
Double Data Rate Synchronous Dynamic Random-Access Memory, officially abbreviated as DDR SDRAM, is a double data rate synchronous dynamic random-access memory class of memory integrated circuits used in computers. DDR SDRAM, also retroactively called DDR1 SDRAM, has been superseded by DDR2 SDRAM, DDR3 SDRAM and DDR4 SDRAM. None of its successors are forward or backward compatible with DDR1 SDRAM, meaning DDR2, DDR3, and DDR4 memory modules will not work in DDR1-equipped motherboards, and vice versa.
Four voltage levels for SSTL are defined:
Double Data Rate 2 Synchronous Dynamic Random-Access Memory, officially abbreviated as DDR2 SDRAM, is a double data rate synchronous dynamic random-access memory interface. It superseded the original DDR SDRAM specification, and is superseded by DDR3 SDRAM. DDR2 DIMMs are neither forward compatible with DDR3 nor backward compatible with DDR.
SSTL_3 uses a reference of .45*VDDQ(1.5V). SSTL_2 and SSTL_18 reference a voltage that is exactly VDDQ/2(1.25V and .9V respectively). [2]
SSTL_3 and SSTL_2 support two termination classes (50 ohm or 25 ohm load). SSTL_18 only supports one (25 ohm load).
Synchronous dynamic random-access memory (SDRAM) is any dynamic random-access memory (DRAM) where the operation of its external pin interface is coordinated by an externally supplied clock signal. DRAM integrated circuits (ICs) produced from the early 1970s to mid-1990s used an asynchronous interface, in which input control signals have a direct effect on internal functions only delayed by the trip across its semiconductor pathways. SDRAM has a synchronous interface, whereby changes on control inputs are recognised after a rising edge of its clock input. In SDRAM families standardized by JEDEC, the clock signal controls the stepping of an internal finite state machine that responds to incoming commands. These commands can be pipelined to improve performance, with previously started operations completing while new commands are received. The memory is divided into several equally sized but independent sections called banks, allowing the device to operate on a memory access command in each bank simultaneously and speed up access in an interleaved fashion. This allows SDRAMs to achieve greater concurrency and higher data transfer rates than asynchronous DRAMs could.
A DIMM or dual in-line memory module comprises a series of dynamic random-access memory integrated circuits. These modules are mounted on a printed circuit board and designed for use in personal computers, workstations and servers. DIMMs began to replace SIMMs as the predominant type of memory module as Intel P5-based Pentium processors began to gain market share.
Low-voltage differential signaling, or LVDS, also known as TIA/EIA-644, is a technical standard that specifies electrical characteristics of a differential, serial communications protocol. LVDS operates at low power and can run at very high speeds using inexpensive twisted-pair copper cables. LVDS is a physical layer specification only; many data communication standards and applications use it and add a data link layer as defined in the OSI model on top of it.
The JEDEC Solid State Technology Association is an independent semiconductor engineering trade organization and standardization body.
A SO-DIMM, SODIMM, or small outline dual in-line memory module, is a type of computer memory built using integrated circuits. SO-DIMMs are a smaller alternative to a DIMM, being roughly half the size of regular DIMMs.
High-speed transceiver logic or HSTL is a technology-independent standard for signaling between integrated circuits. The nominal signaling range is 0 V to 1.5 V, though variations are allowed, and signals may be single-ended or differential. It is designed for operation beyond 180 MHz.
Current mode logic (CML), or source-coupled logic (SCL), is a differential digital logic family intended to transmit data at speeds between 312.5 Mbit/s and 3.125 Gbit/s across standard printed circuit boards.
In computing, serial presence detect (SPD) is a standardized way to automatically access information about a memory module. Earlier 72-pin SIMMs included five pins that provided five bits of parallel presence detect (PPD) data, but the 168-pin DIMM standard changed to a serial presence detect to encode much more information.
Double Data Rate 3 Synchronous Dynamic Random-Access Memory, officially abbreviated as DDR3 SDRAM, is a type of synchronous dynamic random-access memory (SDRAM) with a high bandwidth interface, and has been in use since 2007. It is the higher-speed successor to DDR and DDR2 and predecessor to DDR4 synchronous dynamic random-access memory (SDRAM) chips. DDR3 SDRAM is neither forward nor backward compatible with any earlier type of random-access memory (RAM) because of different signaling voltages, timings, and other factors.
Gunning transceiver logic or GTL is a type of logic signaling used to drive electronic backplane buses. It has a voltage swing between 0.4 volts and 1.2 volts—much lower than that used in TTL and CMOS logic—and symmetrical parallel resistive termination. The maximum signaling frequency is specified to be 100 MHz, although some applications use higher frequencies. GTL is defined by JEDEC standard JESD 8-3 (1993) and was invented by William Gunning while working for Xerox at the Palo Alto Research Center.
An open collector is a common type of output found on many integrated circuits (IC), which behaves like a switch that is either connected to ground or disconnected.
The JEDEC memory standards are the specifications for semiconductor memory circuits and similar storage devices promulgated by the Joint Electron Device Engineering Council (JEDEC) Solid State Technology Association, a semiconductor trade and engineering standardization organization.
Universal Flash Storage, officially abbreviated as UFS, is a flash storage specification for digital cameras, mobile phones and consumer electronic devices. It aims to bring higher data transfer speed and increased reliability to flash memory storage, while reducing market confusion and removing the need for different adapters for different types of card.
Low voltage complementary metal oxide semiconductor (LVCMOS) is a low voltage class of CMOS technology integrated circuits.
Double Data Rate 4 Synchronous Dynamic Random-Access Memory, officially abbreviated as DDR4 SDRAM, is a type of synchronous dynamic random-access memory with a high bandwidth interface.
Low-Power Double Data Rate Synchronous Dynamic Random Access Memory, commonly abbreviated as Low-Power DDR SDRAM or LPDDR SDRAM, is a type of double data rate synchronous dynamic random-access memory that consumes less power and is targeted for mobile computers. It is also known as Mobile DDR, and abbreviated as mDDR.
UniDIMM is a specification for dual in-line memory modules (DIMMs), which are printed circuit boards (PCBs) designed to carry dynamic random-access memory (DRAM) chips. UniDIMMs can be populated with either DDR3 or DDR4 chips, with no support for any additional memory control logic; as a result, the computer's memory controller must support both DDR3 and DDR4 memory standards. The UniDIMM specification was created by Intel for its Skylake microarchitecture, whose integrated memory controller (IMC) supports both DDR3 and DDR4 memory technologies.
High Bandwidth Memory (HBM) is a high-performance RAM interface for 3D-stacked DRAM from Samsung, AMD and Hynix. It is to be used in conjunction with high-performance graphics accelerators and network devices. The first devices to use HBM are the AMD Fiji GPUs.
JEDEC homepage links; require (free) login:
This electronics-related article is a stub. You can help Wikipedia by expanding it. |