Subhelic arc

Last updated

A subhelic arc is a rare halo, formed by internal reflection through ice crystals, that curves upwards from the horizon and touches the tricker arc above the anthelic point. Subhelic arcs result from ray entrance and exit through prism end faces with two intermediate internal reflections.

Contents

Formation

A subhelic arc is formed when sun rays enter one end face of an ice crystal in singly oriented columns and Parry columns, reflect off two of the crystals side faces, and exits the crystal through the opposite end face. The ray leaves the crystal at the exact opposite angle, resulting in a net deviation angle of 120°, the angle for the formation of 120° parhelia. [1]

The subhelic arc touches the top of the tricker arc, an indication the two have closely related ray paths. [2]

The subhelic arc crosses the parhelic circle at an acute angle, and at a sun elevation of 27° it passes exactly through the 120° parhelion. [3]

See also

Notes

  1. Cowley, South Pole Halos - Zenith View
  2. Cowley, South Pole Halos - Anthelic View
  3. Vornhusen, First Report on the Danzig Halo Display

Related Research Articles

<span class="mw-page-title-main">Sun dog</span> Atmospheric optical phenomenon

A sun dog or mock sun, also called a parhelion in meteorology, is an atmospheric optical phenomenon that consists of a bright spot to one or both sides of the Sun. Two sun dogs often flank the Sun within a 22° halo.

<span class="mw-page-title-main">Halo (optical phenomenon)</span> Optical phenomenon of the sky

A halo is an optical phenomenon produced by light interacting with ice crystals suspended in the atmosphere. Halos can have many forms, ranging from colored or white rings to arcs and spots in the sky. Many of these appear near the Sun or Moon, but others occur elsewhere or even in the opposite part of the sky. Among the best known halo types are the circular halo, light pillars, and sun dogs, but many others occur; some are fairly common while others are extremely rare.

<span class="mw-page-title-main">Antisolar point</span> Point on the celestial sphere opposite Sun

The antisolar point is the abstract point on the celestial sphere directly opposite the Sun from an observer's perspective. This means that the antisolar point lies above the horizon when the Sun is below it, and vice versa. On a sunny day, the antisolar point can be easily found; it is located within the shadow of the observer's head. Like the zenith and nadir, the antisolar point is not fixed in three-dimensional space, but is defined relative to the observer. Each observer has an antisolar point that moves as the observer changes position.

<span class="mw-page-title-main">Anthelion</span>

An anthelion is a rare optical phenomenon of the halo family. It appears on the parhelic circle opposite to the Sun as a faint white spot, not unlike a sundog, and may be crossed by an X-shaped pair of diffuse arcs.

<span class="mw-page-title-main">Rainbow</span> Meteorological phenomenon

A rainbow is an optical phenomenon that can occur under certain meteorological conditions. It is caused by refraction, internal reflection and dispersion of light in water droplets resulting in a continuous spectrum of light appearing in the sky. The rainbow takes the form of a multicoloured circular arc. Rainbows caused by sunlight always appear in the section of sky directly opposite the Sun.

<span class="mw-page-title-main">Circumhorizontal arc</span> Optical phenomenon

A circumhorizontal arc is an optical phenomenon that belongs to the family of ice halos formed by the refraction of sunlight or moonlight in plate-shaped ice crystals suspended in the atmosphere, typically in cirrus or cirrostratus clouds. In its full form, the arc has the appearance of a large, brightly spectrum-coloured band running parallel to the horizon, located far below the Sun or Moon. The distance between the arc and the Sun or Moon is twice as far as the common 22-degree halo. Often, when the halo-forming cloud is small or patchy, only fragments of the arc are seen. As with all halos, it can be caused by the Sun as well as the Moon.

<span class="mw-page-title-main">Light pillar</span> Reflections of a light source created by ice crystals in the air

A light pillar is an atmospheric optical phenomenon in which a vertical beam of light appears to extend above and/or below a light source. The effect is created by the reflection of light from tiny ice crystals that are suspended in the atmosphere or that comprise high-altitude clouds. If the light comes from the Sun, the phenomenon is called a sun pillar or solar pillar. Light pillars can also be caused by the Moon or terrestrial sources, such as streetlights and erupting volcanoes.

<span class="mw-page-title-main">Circumzenithal arc</span> Optical phenomenon arising from refraction of sunlight through ice crystals

The circumzenithal arc, also called the circumzenith arc (CZA), upside-down rainbow, and the Bravais arc, is an optical phenomenon similar in appearance to a rainbow, but belonging to the family of halos arising from refraction of sunlight through ice crystals, generally in cirrus or cirrostratus clouds, rather than from raindrops. The arc is located at a considerable distance above the observed Sun and at most forms a quarter of a circle centered on the zenith. It has been called "a smile in the sky", its first impression being that of an upside-down rainbow. The CZA is one of the brightest and most colorful members of the halo family. Its colors, ranging from violet on top to red at the bottom, are purer than those of a rainbow because there is much less overlap in their formation.

<span class="mw-page-title-main">Parhelic circle</span>

A parhelic circle is a type of halo, an optical phenomenon appearing as a horizontal white line on the same altitude as the sun, or occasionally the Moon. If complete, it stretches all around the sky, but more commonly it only appears in sections. If the halo occurs due to light from the moon rather than the sun, it is known as a paraselenic circle.

<span class="mw-page-title-main">22° halo</span> Atmospheric optical phenomenon

A 22° halo is an atmospheric optical phenomenon that consists of a halo with an apparent radius of approximately 22° around the Sun or Moon. When visible around the Moon, it is also known as a moon ring, storm ring, or winter halo. It forms as sunlight or moonlight is refracted by millions of hexagonal ice crystals suspended in the atmosphere. Its radius is roughly the length of an outstretched hand at arm's length.

<span class="mw-page-title-main">120° parhelion</span>

A 120° parhelion is a relatively rare halo, an optical phenomenon occasionally appearing along with very bright sun dogs when ice crystal-saturated cirrus clouds fill the atmosphere. The 120° parhelia are named for appearing in pair on the parhelic circle ±120° from the sun.

<span class="mw-page-title-main">Tangent arc</span> Atmospheric optical phemonenon

Tangent arcs are a type of halo, an atmospheric optical phenomenon, which appears above and below the observed Sun or Moon, tangent to the 22° halo. To produce these arcs, rod-shaped hexagonal ice crystals need to have their long axis aligned horizontally.

<span class="mw-page-title-main">46° halo</span> Atmospheric optical phenomenon

A 46° halo is a rare atmospheric optical phenomenon that consists of a halo with an apparent radius of approximately 46° around the Sun. At solar elevations of 15–27°, 46° halos are often confused with the less rare and more colourful supralateral and infralateral arcs, which cross the parhelic circle at about 46° to the left and right of the sun.

<span class="mw-page-title-main">Subparhelic circle</span>

The subparhelic circle is a rare halo, an optical phenomenon, located below the horizon. It passes through both the subsun and the antisolar point. The subparhelic circle is the subhorizon counterpart to the parhelic circle, located above the horizon.

A Liljequist parhelion is a rare halo, an optical phenomenon in the form of a brightened spot on the parhelic circle approximately 150–160° from the sun; i.e., between the position of the 120° parhelion and the anthelion.

<span class="mw-page-title-main">Parry arc</span> Optical phenomenon

A Parry arc is a rare halo, an optical phenomenon which occasionally appears over a 22° halo together with an upper tangent arc.

<i>Vädersolstavlan</i> Painting by Jacob Heinrich Elbfas

Vädersolstavlan is an oil-on-panel painting depicting a halo display, an atmospheric optical phenomenon, observed over Stockholm on 20 April 1535. It is named after the sun dogs appearing on the upper right part of the painting. While chiefly noted for being the oldest depiction of Stockholm in colour, it is arguably also the oldest Swedish landscape painting and the oldest depiction of sun dogs.

The Kern arc is an extremely rare atmospheric optical phenomenon belonging to the family of ice crystal halos. It is a complete and faint circle around the zenith, in contrast to the related and much more common circumzenithal arc, which is only ever a partial circle.

<span class="mw-page-title-main">Atmospheric optics</span> Study of the optical characteristics of the atmosphere or products of atmospheric processes

Atmospheric optics is "the study of the optical characteristics of the atmosphere or products of atmospheric processes .... [including] temporal and spatial resolutions beyond those discernible with the naked eye". Meteorological optics is "that part of atmospheric optics concerned with the study of patterns observable with the naked eye". Nevertheless, the two terms are sometimes used interchangeably.

<span class="mw-page-title-main">Lowitz arc</span>

A Lowitz arc is an optical phenomenon that occurs in the atmosphere; specifically, it is a rare type of ice crystal halo that forms a luminous arc which extends inwards from a sun dog (parhelion) and may continue above or below the sun.

References