Submarine groundwater discharge

Last updated

Submarine groundwater discharge (SGD) is a hydrological process which commonly occurs in coastal areas. It is described as submarine inflow of fresh-, and brackish groundwater from land into the sea. Submarine Groundwater Discharge is controlled by several forcing mechanisms, which cause a hydraulic gradient between land and sea. [1] Considering the different regional settings the discharge occurs either as (1) a focused flow along fractures in karst and rocky areas, (2) a dispersed flow in soft sediments, or (3) a recirculation of seawater within marine sediments. Submarine Groundwater Discharge plays an important role in coastal biogeochemical processes and hydrological cycles such as the formation of offshore plankton blooms, hydrological cycles, and the release of nutrients, trace elements and gases. [2] [3] [4] [5] It affects coastal ecosystems and has been used as a freshwater resource by some local communities for millennia. [6]

Contents

Forcing mechanisms

In coastal areas the groundwater and seawater flows are driven by a variety of factors. Both types of water can circulate in marine sediments due to tidal pumping, waves, bottom currents or density driven transport processes. Meteoric freshwaters can discharge along confined and unconfined aquifers into the sea or the oppositional process of seawater intruding into groundwater charged aquifers can take place. [1] The flow of both fresh and sea water is primarily controlled by the hydraulic gradients between land and sea and differences in the densities between both waters and the permeabilities of the sediments.

According to Drabbe and Badon-Ghijben (1888) [7] and Herzberg (1901), [8] the thickness of a freshwater lens below sea level (z) corresponds with the thickness of the freshwater level above sea level (h) as:

z= ρf/((ρs-ρf))*h

With z being the thickness between the saltwater-freshwater interface and the sea level, h being the thickness between the top of the freshwater lens and the sea level, ρf being the density of freshwater and ρs being the density of saltwater. Including the densities of freshwater (ρf = 1.00 g •cm-3) and seawater (ρs = 1.025 g •cm-3) equation (2) simplifies to:

z=40*h

Together with Darcy's Law, the length of a salt wedge from the shoreline into the hinterland can be calculated:

L= ((ρs-ρf)Kf m)/(ρf Q)

With Kf being the hydraulic conductivity, m the aquifer thickness and Q the discharge rate. [9] Assuming an isotropic aquifer system the length of a salt wedge solely depends on the hydraulic conductivity, the aquifer thickness and is inversely related to the discharge rate. These assumptions are only valid under hydrostatic conditions in the aquifer system. In general the interface between fresh and saline water forms a zone of transition due to diffusion/dispersion or local anisotropy. [10]

Methods

The first study about submarine groundwater discharge was done by Sonrel (1868), who speculated on the risk of submarine springs for sailors. However, until the mid-1990s, SGD remained rather unrecognized by the scientific community because it was hard to detect and measure the freshwater discharge. The first elaborated method to study SGD was done by Moore (1996), who used radium-226 as a tracer for groundwater. Since then several methods and instruments have been developed to attempt to detect and quantify discharge rates.

Radium-226

The first study which detected and quantified submarine groundwater discharge on a regional basis was done by Moore (1996) in the South Atlantic Bight off South Carolina. He measured enhanced radium-226 concentrations within the water column near shore and up to about 100 kilometres (62 mi) from the shoreline. Radium-226 is a decay product of thorium-230, which is produced within sediments and supplied by rivers. However, these sources could not explain the high concentrations present in the study area. Moore (1996) hypothesized that submarine groundwater, enriched in radium-226, was responsible for the high concentrations. This hypothesis has been tested numerous times at sites around the world and confirmed at each site. [11]

Seepage meter

Lee (1977) [12] designed a seepage meter, which consists of a chamber which is connected to a sampling port and a plastic bag. The chamber is inserted into the sediment and water discharging through the sediments is caught within the plastic bag. The change in volume of water which is caught in the plastic bag over time represents the freshwater flux.

Pore water profiles

According to Schlüter et al. (2004) [13] chloride pore water profiles can be used to investigate submarine groundwater discharge. Chloride can be used as a conservative tracer, as it is enriched in seawater and depleted in groundwater. Three different shapes of chloride pore water profiles reflect three different transport modes within marine sediments. A chloride profile showing constant concentrations with depth indicates that no submarine groundwater is present. A chloride profile with a linear decline indicates a diffusive mixing between groundwater and seawater and a concave shaped chloride profile represents an advective admixture of submarine groundwater from below. Stable isotope ratios in the water molecule may also be used to trace and quantify the sources of a submarine groundwater discharge. [14]

See also

Related Research Articles

<span class="mw-page-title-main">Hydrology</span> Science of the movement, distribution, and quality of water on Earth and other planets

Hydrology is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and drainage basin sustainability. A practitioner of hydrology is called a hydrologist. Hydrologists are scientists studying earth or environmental science, civil or environmental engineering, and physical geography. Using various analytical methods and scientific techniques, they collect and analyze data to help solve water related problems such as environmental preservation, natural disasters, and water management.

<span class="mw-page-title-main">Aquifer</span> Underground layer of water-bearing permeable rock

An aquifer is an underground layer of water-bearing, permeable rock, rock fractures, or unconsolidated materials. Groundwater from aquifers can be extracted using a water well. Water from aquifers can be sustainably harvested through the use of qanats. Aquifers vary greatly in their characteristics. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology. Related terms include aquitard, which is a bed of low permeability along an aquifer, and aquiclude, which is a solid, impermeable area underlying or overlying an aquifer, the pressure of which could lead to the formation of a confined aquifer. The classification of aquifers is as follows: Saturated versus unsaturated; aquifers versus aquitards; confined versus unconfined; isotropic versus anisotropic; porous, karst, or fractured; transboundary aquifer.

<span class="mw-page-title-main">Water table</span> Top of a saturated aquifer, or where the water pressure head is equal to the atmospheric pressure

Water table is the term for the upper surface of the zone of saturation. The zone of saturation is where the pores and fractures of the ground are saturated with groundwater, which may be fresh, saline, or brackish, depending on the locality. It can also be simply explained as the depth below which the ground is saturated.

<span class="mw-page-title-main">Water extraction</span> Process of taking water from any source

Water extraction is the process of taking water from any source, either temporarily or permanently, for flood control or to obtain water for, for example, irrigation. The extracted water could also be used as drinking water after suitable treatment.

<span class="mw-page-title-main">Groundwater</span> Water located beneath the ground surface

Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from the surface; it may discharge from the surface naturally at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

<span class="mw-page-title-main">Hydrogeology</span> Study of the distribution and movement of groundwater

Hydrogeology is the area of geology that deals with the distribution and movement of groundwater in the soil and rocks of the Earth's crust. The terms groundwater hydrology, geohydrology, and hydrogeology are often used interchangeably.

Saltwater intrusion is the movement of saline water into freshwater aquifers, which can lead to groundwater quality degradation, including drinking water sources, and other consequences. Saltwater intrusion can naturally occur in coastal aquifers, owing to the hydraulic connection between groundwater and seawater. Because saline water has a higher mineral content than freshwater, it is denser and has a higher water pressure. As a result, saltwater can push inland beneath the freshwater. In other topologies, submarine groundwater discharge can push fresh water into saltwater.

Fossil water or paleowater is an ancient body of water that has been contained in some undisturbed space, typically groundwater in an aquifer, for millennia. Other types of fossil water can include subglacial lakes, such as Antarctica's Lake Vostok, and even ancient water on other planets.

In hydrology, there are two similar but distinct definitions in use for the word drawdown:

In the field of hydrogeology, storage properties are physical properties that characterize the capacity of an aquifer to release groundwater. These properties are storativity (S), specific storage (Ss) and specific yield (Sy). According to Groundwater, by Freeze and Cherry (1979), specific storage, [m−1], of a saturated aquifer is defined as the volume of water that a unit volume of the aquifer releases from storage under a unit decline in hydraulic head.

Used in hydrogeology, the groundwater flow equation is the mathematical relationship which is used to describe the flow of groundwater through an aquifer. The transient flow of groundwater is described by a form of the diffusion equation, similar to that used in heat transfer to describe the flow of heat in a solid. The steady-state flow of groundwater is described by a form of the Laplace equation, which is a form of potential flow and has analogs in numerous fields.

The Floridan aquifer system, composed of the Upper and Lower Floridan aquifers, is a sequence of Paleogene carbonate rock which spans an area of about 100,000 square miles (260,000 km2) in the southeastern United States. It underlies the entire state of Florida and parts of Alabama, Georgia, Mississippi, and South Carolina.

Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions.

Estuarine water circulation is controlled by the inflow of rivers, the tides, rainfall and evaporation, the wind, and other oceanic events such as an upwelling, an eddy, and storms. Estuarine water circulation patterns are influenced by vertical mixing and stratification, and can affect residence time and exposure time.

<span class="mw-page-title-main">Lens (hydrology)</span> Layer of fresh groundwater

In hydrology, a lens, also called freshwater lens or Ghyben-Herzberg lens, is a convex-shaped layer of fresh groundwater that floats above the denser saltwater and is usually found on small coral or limestone islands and atolls. This aquifer of fresh water is recharged through precipitation that infiltrates the top layer of soil and percolates downward until it reaches the saturated zone. The recharge rate of the lens can be summarized by the following equation:

The Marine Unsaturated Model is a two-dimensional finite element model capable of simulating the migration of water and solutes in saturated-unsaturated porous media while accounting for the impact of solute concentration on water density and viscosity, as saltwater is heaving and more viscous than freshwater. The detailed formulation of the MARUN model is found in and. The model was used to investigate seepage flow in trenches and dams, the migration of brine following evaporation and, submarine groundwater discharge, and beach hydrodynamics to explain the persistence of some of the Exxon Valdez oil in Alaska beaches.

The State of California enforces several methodologies through technical innovation and scientific approach to combat saltwater intrusion in areas vulnerable to saltwater intrusion. Seawater intrusion is either caused by groundwater extraction or increased in sea level. For every 1-foot of freshwater depression (0.30 m), sea-salty waters rises 40 feet (12 m) as the cone of depression forms. Salinization of groundwater is one of the main water pollution ever produced by mankind or from natural processes. It degrades water quality to the point it passes acceptable drink water and irrigation standards.

<span class="mw-page-title-main">Coastal hydrogeology</span> Branch of hydrogeology

Coastal Hydrogeology is a branch of Hydrogeology that focuses on the movement and the chemical properties of groundwater in coastal areas. Coastal Hydrogeology studies the interaction between fresh groundwater and seawater, including seawater intrusion, sea level induced groundwater level fluctuation, submarine groundwater discharge, human activities and groundwater management in coastal areas.

<span class="mw-page-title-main">Offshore freshened groundwater</span> Water located in the sub-seafloor

Offshore freshened groundwater(OFG) is water that contains a Total Dissolved Solid (TDS) concentration lower than sea water, and which is hosted in porous sediments and rocks located in the sub-seafloor. OFG systems have been documented all over around the world and have an estimated global volume of around 1 × 106 km3. Their study is important because they may represent an unconventional source of potable water for human populations living near the coast, especially in areas where groundwater resources are scarce or facing stress

An anchialine system is a landlocked body of water with a subterranean connection to the ocean. Depending on its formation, these systems can exist in one of two primary forms: pools or caves. The primary differentiating characteristics between pools and caves is the availability of light; cave systems are generally aphotic while pools are euphotic. The difference in light availability has a large influence on the biology of a given system. Anchialine systems are a feature of coastal aquifers which are density stratified, with water near the surface being fresh or brackish, and saline water intruding from the coast at depth. Depending on the site, it is sometimes possible to access the deeper saline water directly in the anchialine pool, or sometimes it may be accessible by cave diving.

References

  1. 1 2 William C.Burnett, Bokuniewicz, Henry, Huettel, Markus, Moore, Willard S., Taniguchi, Makoto. "Groundwater and pore water inputs to the coastal zone", Biogeochemistry, Volume 66, 2003, Page 3–33.
  2. Claudette Spiteri, Caroline P. Slomp, Matthew A. Charette, Kagan Tuncay, Christof Meile. "Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling", Geochimica et Cosmochimica Acta, Volume 72, Issue 14, 15 July 2008, Pages 3398–3412.
  3. Caroline P. Slomp, Philippe Van Cappellen. "Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact", Journal of Hydrology, Volume 295, Issues 1–4, 10 August 2004, Pages 64–86.
  4. Moore, Willard S. (1996). "Large groundwater inputs to coastal waters revealed by 226Ra enrichments". Nature. 380 (6575): 612–614. doi:10.1038/380612a0. S2CID   4249682.
  5. Matthew A. Charette, Edward R. Sholkovitz. "Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water", Geochimica et Cosmochimica Acta, Volume 70, Issue 4, 15 February 2006, Pages 811–826.
  6. Moosdorf, N.; Oehler, T. (2017-08-01). "Societal use of fresh submarine groundwater discharge: An overlooked water resource". Earth-Science Reviews. 171: 338–348. Bibcode:2017ESRv..171..338M. doi: 10.1016/j.earscirev.2017.06.006 . ISSN   0012-8252.
  7. Drabbe, J., Badon-Ghijben W., 1888. Nota in verband met de voorgenomen putboring nabij Amsterdam (Notes on the probable results of the proposed well drilling near Amsterdam). Tijdschrift van het Koninklinjk Instituut van Ingenieurs. The Hague 1888/9: 8–22
  8. Herzberg, B. 1901. Die Wasserversorgung einiger Nordseebader. Gasbeleuchtung und Wasserversorgung 44: 815–819, 842–844
  9. Domenico, E. P. & Schwartz, F. W.; 1998. Physical and chemical hydrogeology. 2nd ed. New York. John Wiley & Sons Inc.: 506
  10. Stuyfzand, P. J.; 1993. Hydrochemistry and Hydrology of the Coastal Dune area of the Western Netherlands. PhD thesis, Vrije Universiteit Amsterdam: 367.
  11. Moore, Willard (2010). "The Effect of Submarine Groundwater Discharge on the Ocean". Annual Review of Marine Science. 2: 345–374. Bibcode:2010ARMS....2...59M. doi:10.1146/annurev-marine-120308-081019. PMID   21141658. S2CID   682677.
  12. David Robert Lee. "A device to measure seepage flux in estuaries and lakes", Limnology and Oceanography, Volume 22, 1977, pp. 140–147
  13. Schlüter, M.; Sauter, E.J.; Andersen, C.E.; Dahlgaard, H.; Dando, P.R. (2004). "Spatial distribution and budget for submarine groundwater discharge in Eckernforde Bay (Western Baltic Sea)" (PDF). Limnology and Oceanography. 49 (1): 157–167. Bibcode:2004LimOc..49..157S. doi:10.4319/lo.2004.49.1.0157. S2CID   13453691.
  14. Cardenas, M. Bayani; Rodolfo, Raymond S.; Lapus, Mark R.; Cabria, Hillel B.; Fullon, Jose; Gojunco, Gordos R.; Breecker, Daniel O.; Cantarero, Danica M.; Evaristo, Jaivime; Siringan, Fernando P.; Zhang, Tongwei (2020). "Submarine Groundwater and Vent Discharge in a Volcanic Area Associated With Coastal Acidification". Geophysical Research Letters. 47 (1): e2019GL085730. doi:10.1029/2019GL085730. ISSN   1944-8007. S2CID   212912472.