Surgical stress

Last updated

Surgical stress is the systemic response to surgical injury and is characterized by activation of the sympathetic nervous system, endocrine responses as well as immunological and haematological changes. [1] [2] [3] [4] [5] Measurement of surgical stress is used in anaesthesia, physiology and surgery.

Contents

Analysis of the surgical stress response can be used for evaluation of surgical techniques and comparisons of different anaesthetic protocols. Moreover, they can be performed both in the intraoperative or postoperative period. If there is a choice between different techniques for a surgical procedure, one method to evaluate and compare the surgical techniques is to subject one group of patients to one technique, and the other group of patients to another technique, after which the surgical stress responses triggered by the procedures are compared. Absent any other difference, the technique with the least surgical stress response is considered the best for the patient. [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [ excessive citations ]

Similarly, a group of patients can be subjected to a surgical procedure where one anaesthetic protocol is used, and another group of patients are subjected to the same surgical procedure but with a different anaesthetic protocol. The anaesthetic protocol that yields the least stress response is considered the most suitable for that surgical procedure. [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [ excessive citations ]

It is generally considered or hypothesized that a more invasive surgery, with extensive tissue trauma and noxious stimuli, triggers a more significant stress response. [30] [31] [32] [33] [34] [35]

However, duration of surgery may affect the stress response which therefore may make comparisons of procedures that differ in time difficult. [36]

Methods

Examples of used parameters are blood pressure, heart rate, heart rate variability, photoplethysmography and skin conductance. Essentially, physiologic parameters are measured in order to assess sympathetic tone as a surrogate measure of stress. Intraoperative neurophysiological monitoring can also be used. Examples of commonly used biomarkers are adrenaline, cortisol, interleukins, noradrenaline and vasopressin. [37] [38]

History

Loss of nitrogen (urea) was observed already in the 1930s in fracture patients by the Scottish physician David Cuthbertson. The reason for the patients' catabolic response was not understood at the time, but later attention was turned to the stress reaction caused by the surgery. [39] [40] The evolutionary background is believed to be that a wounded animal increases its chance of survival by using stored energy reserves. The stress reaction thus initiates a catabolic state by an increased release of catabolic hormones. Additionally immunosuppressive hormones are also released. In a surgery patient, the stress reaction is considered detrimental for wound healing. However, surgical stress reduced mortality from endotoxin shock. [41] Today, development of new surgical techniques and anaesthetic protocols aim to minimise the surgical stress reaction. [42] [43]

Related Research Articles

<span class="mw-page-title-main">Anesthesia</span> State of medically-controlled temporary loss of sensation or awareness

Anesthesia or anaesthesia is a state of controlled, temporary loss of sensation or awareness that is induced for medical or veterinary purposes. It may include some or all of analgesia, paralysis, amnesia, and unconsciousness. An individual under the effects of anesthetic drugs is referred to as being anesthetized.

<span class="mw-page-title-main">Laparoscopy</span> Minimally invasive operations within the abdominal or pelvic cavities

Laparoscopy is an operation performed in the abdomen or pelvis using small incisions with the aid of a camera. The laparoscope aids diagnosis or therapeutic interventions with a few small cuts in the abdomen.

<span class="mw-page-title-main">Vasopressin</span> Mammalian hormone released from the pituitary gland

Human vasopressin, also called antidiuretic hormone (ADH), arginine vasopressin (AVP) or argipressin, is a hormone synthesized from the AVP gene as a peptide prohormone in neurons in the hypothalamus, and is converted to AVP. It then travels down the axon terminating in the posterior pituitary, and is released from vesicles into the circulation in response to extracellular fluid hypertonicity (hyperosmolality). AVP has two primary functions. First, it increases the amount of solute-free water reabsorbed back into the circulation from the filtrate in the kidney tubules of the nephrons. Second, AVP constricts arterioles, which increases peripheral vascular resistance and raises arterial blood pressure.

<span class="mw-page-title-main">General anaesthesia</span> Medically induced loss of consciousness

General anaesthesia (UK) or general anesthesia (US) is a method of medically inducing loss of consciousness that renders a patient unarousable even with painful stimuli. This effect is achieved by administering either intravenous or inhalational general anaesthetic medications, which often act in combination with an analgesic and neuromuscular blocking agent. Spontaneous ventilation is often inadequate during the procedure and intervention is often necessary to protect the airway. General anaesthesia is generally performed in an operating theater to allow surgical procedures that would otherwise be intolerably painful for a patient, or in an intensive care unit or emergency department to facilitate endotracheal intubation and mechanical ventilation in critically ill patients.

Neutering, from the Latin neuter, is the removal of a non-human animal's reproductive organ, either all of it or a considerably large part. The male-specific term is castration, while spaying is usually reserved for female animals. Colloquially, both terms are often referred to as fixing. In male horses, castrating is referred to as gelding. An animal that has not been neutered is sometimes referred to as entire or intact.

<span class="mw-page-title-main">Cholecystectomy</span> Surgical removal of the gallbladder

Cholecystectomy is the surgical removal of the gallbladder. Cholecystectomy is a common treatment of symptomatic gallstones and other gallbladder conditions. In 2011, cholecystectomy was the eighth most common operating room procedure performed in hospitals in the United States. Cholecystectomy can be performed either laparoscopically, or via an open surgical technique.

<span class="mw-page-title-main">Spinal anaesthesia</span> Form of neuraxial regional anaesthesia

Spinal anaesthesia, also called spinal block, subarachnoid block, intradural block and intrathecal block, is a form of neuraxial regional anaesthesia involving the injection of a local anaesthetic or opioid into the subarachnoid space, generally through a fine needle, usually 9 cm (3.5 in) long. It is a safe and effective form of anesthesia usually performed by anesthesiologists that can be used as an alternative to general anesthesia commonly in surgeries involving the lower extremities and surgeries below the umbilicus. The local anesthetic with or without an opioid injected into the cerebrospinal fluid provides locoregional anaesthesia: true analgesia, motor, sensory and autonomic (sympathetic) blockade. Administering analgesics in the cerebrospinal fluid without a local anaesthetic produces locoregional analgesia: markedly reduced pain sensation, some autonomic blockade, but no sensory or motor block. Locoregional analgesia, due to mainly the absence of motor and sympathetic block may be preferred over locoregional anaesthesia in some postoperative care settings. The tip of the spinal needle has a point or small bevel. Recently, pencil point needles have been made available.

Awareness under anesthesia, also referred to as intraoperative awareness or accidental awareness during general anesthesia (AAGA), is a rare complication of general anesthesia where patients regain varying levels of consciousness during their surgical procedures. While anesthesia awareness is possible without resulting in any long-term memory of the experience, it is also possible for victims to have awareness with explicit recall, where they can remember the events related to their surgery.

Postoperative nausea and vomiting (PONV) is the phenomenon of nausea, vomiting, or retching experienced by a patient in the postanesthesia care unit (PACU) or within 24 hours following a surgical procedure. PONV affects about 10% of the population undergoing general anaesthesia each year. PONV can be unpleasant and lead to a delay in mobilization and food, fluid, and medication intake following surgery.

<span class="mw-page-title-main">Bispectral index</span>

Bispectral index (BIS) is one of several technologies used to monitor depth of anesthesia. BIS monitors are used to supplement Guedel's classification system for determining depth of anesthesia. Titrating anesthetic agents to a specific bispectral index during general anesthesia in adults allows the anesthetist to adjust the amount of anesthetic agent to the needs of the patient, possibly resulting in a more rapid emergence from anesthesia. Use of the BIS monitor could reduce the incidence of intraoperative awareness during anaesthesia. The exact details of the algorithm used to create the BIS index have not been disclosed by the company that developed it.

<span class="mw-page-title-main">Thoracotomy</span> Surgical procedure

A thoracotomy is a surgical procedure to gain access into the pleural space of the chest. It is performed by surgeons to gain access to the thoracic organs, most commonly the heart, the lungs, or the esophagus, or for access to the thoracic aorta or the anterior spine. A thoracotomy is the first step in thoracic surgeries including lobectomy or pneumonectomy for lung cancer or to gain thoracic access in major trauma.

<span class="mw-page-title-main">Remifentanil</span> Synthetic opioid analgesic

Remifentanil, marketed under the brand name Ultiva is a potent, short-acting synthetic opioid analgesic drug. It is given to patients during surgery to relieve pain and as an adjunct to an anaesthetic. Remifentanil is used for sedation as well as combined with other medications for use in general anesthesia. The use of remifentanil has made possible the use of high-dose opioid and low-dose hypnotic anesthesia, due to synergism between remifentanil and various hypnotic drugs and volatile anesthetics.

A post-anesthesia care unit, often abbreviated PACU and sometimes referred to as post-anesthesia recovery or PAR, or simply recovery, is a part of hospitals, ambulatory care centers, and other medical facilities. Patients who received general anesthesia, regional anesthesia, or local anesthesia are transferred from the operating room suites to the recovery area. The patients are monitored typically by anesthesiologists, nurse anesthetists, and other medical staff. Providers follow a standardized handoff to the medical PACU staff that includes, which medications were given in the operating room suites, how hemodynamics were during the procedures, and what is expected for their recovery. After initial assessment and stabilization, patients are monitored for any potential complications, until the patient is transferred back to their hospital rooms.

<span class="mw-page-title-main">Adrenalectomy</span> Surgical removal of adrenal glands

Adrenalectomy is the surgical removal of one or both adrenal glands. It is usually done to remove tumors of the adrenal glands that are producing excess hormones or is large in size. Adrenalectomy can also be done to remove a cancerous tumor of the adrenal glands, or cancer that has spread from another location, such as the kidney or lung. Adrenalectomy is not performed on those who have severe coagulopathy or whose heart and lungs are too weak to undergo surgery. The procedure can be performed using an open incision (laparotomy) or minimally invasive laparoscopic or robot-assisted techniques. Minimally invasive techniques are increasingly the gold standard of care due to shorter length of stay in the hospital, lower blood loss, and similar complication rates.

<span class="mw-page-title-main">Dexmedetomidine</span> Anxiolytic, sedative, and pain medication

Dexmedetomidine, sold under the trade name Precedex among others, is a drug used in humans for sedation. Veterinarians use dexmedetomidine for similar purposes in treating cats, dogs, and horses. It is also used in humans to treat acute agitation associated with schizophrenia or bipolar I or II disorder.

Postoperative cognitive dysfunction (POCD) is a decline in cognitive function that may last from 1–12 months after surgery, or longer. In some cases, this disorder may persist for several years after major surgery. POCD is distinct from emergence delirium. Its causes are under investigation and occurs commonly in older patients and those with pre-existing cognitive impairment.

The Outcomes Research Consortium is an international clinical research group that focuses on the perioperative period, along with critical care and pain management. The Consortium's aim is to improve the quality of care for surgical, critical care, and chronic pain patients and to "Provide the evidence for evidence-based practice." Members of the Consortium are especially interested in testing simple, low-risk, and inexpensive treatments that have the potential to markedly improve patients' surgical experiences.

Surgical humidification is the conditioning of insufflation gas with water vapour (humidity) and heat during surgery. Surgical humidification is used to reduce the risk of tissue drying and evaporative cooling.

Postoperative wounds are those wounds acquired during surgical procedures. Postoperative wound healing occurs after surgery and normally follows distinct bodily reactions: the inflammatory response, the proliferation of cells and tissues that initiate healing, and the final remodeling. Postoperative wounds are different from other wounds in that they are anticipated and treatment is usually standardized depending on the type of surgery performed. Since the wounds are 'predicted' actions can be taken beforehand and after surgery that can reduce complications and promote healing.

<span class="mw-page-title-main">Alex Bekker</span> Physician, author and academic

Alex Bekker is a physician, author and academic. He is a professor and chair at the Department of Anesthesiology, Rutgers New Jersey Medical School. He is also professor at the Department of Physiology, Pharmacology & Neurosciences. He serves as the Chief of Anesthesiology Service at the University Hospital in Newark.

References

  1. Desborough, JP (Jul 2000). "The stress response to trauma and surgery". British Journal of Anaesthesia. 85 (1): 109–17. doi: 10.1093/bja/85.1.109 . PMID   10927999.
  2. Giannoudis, PV; Dinopoulos, H; Chalidis, B; Hall, GM (Dec 2006). "Surgical stress response". Injury. 37 (Suppl 5): S3–9. doi:10.1016/S0020-1383(07)70005-0. PMID   17338909. S2CID   23808365.
  3. Weissman, C (Aug 1990). "The metabolic response to stress: an overview and update". Anesthesiology. 73 (2): 308–27. doi: 10.1097/00000542-199008000-00020 . PMID   2200312. S2CID   6068174.
  4. Finnerty, Celeste C.; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A.; Herndon, David N. (September 2013). "The Surgically Induced Stress Response". Journal of Parenteral and Enteral Nutrition. 37 (5_suppl): 21S–29S. doi:10.1177/0148607113496117. PMC   3920901 . PMID   24009246.
  5. Hernández-Avalos, I.; Flores-Gasca, E.; Mota-Rojas, D.; Casas-Alvarado, A.; Miranda-Cortés, A. E.; Domínguez-Oliva, A. (11 February 2021). "Neurobiology of anesthetic-surgical stress and induced behavioral changes in dogs and cats: A review" (PDF). Veterinary World. 14 (2): 393–404. doi: 10.14202/vetworld.2021.393-404 . ISSN   0972-8988. PMC   7994130 . PMID   33776304.
  6. Freeman, LJ; Rahmani, EY; Al-Haddad, M; Sherman, S; Chiorean, MV; Selzer, DJ; Snyder, PW; Constable, PD (Aug 2010). "Comparison of pain and postoperative stress in dogs undergoing natural orifice transluminal endoscopic surgery, laparoscopic, and open oophorectomy". Gastrointestinal Endoscopy. 72 (2): 373–80. doi:10.1016/j.gie.2010.01.066. PMID   20537637.
  7. Höglund, OV; Olsson, K; Hagman, R; Öhlund, M; Olsson, U; Lagerstedt, AS (Aug 2011). "Comparison of haemodynamic changes during two surgical methods for neutering female dogs". Research in Veterinary Science. 91 (1): 159–63. doi:10.1016/j.rvsc.2010.08.013. PMID   20888021.
  8. Kataja, J; Chrapek, W; Kaukinen, S; Pimenoff, G; Salenius, JP (2007). "Hormonal stress response and hemodynamic stability in patients undergoing endovascular vs. conventional abdominal aortic aneurysm repair". Scandinavian Journal of Surgery. 96 (3): 236–42. doi:10.1177/145749690709600309. PMID   17966750. S2CID   43913306.
  9. Naitoh, T; Garcia-Ruiz, A; Vladisavljevic, A; Matsuno, S; Gagner, M (Nov 2002). "Gastrointestinal transit and stress response after laparoscopic vs conventional distal pancreatectomy in the canine model". Surgical Endoscopy. 16 (11): 1627–30. doi:10.1007/s00464-002-0007-0. PMID   12073003. S2CID   26440980.
  10. Veenhof, AA; Sietses, C; von Blomberg, BM; van Hoogstraten, IM; vd Pas, MH; Meijerink, WJ; vd Peet, DL; vd Tol, MP; Bonjer, HJ; Cuesta, MA (Jan 2011). "The surgical stress response and postoperative immune function after laparoscopic or conventional total mesorectal excision in rectal cancer: a randomized trial". International Journal of Colorectal Disease. 26 (1): 53–9. doi:10.1007/s00384-010-1056-9. PMC   3015173 . PMID   20922542.
  11. Yoder, B; Wolf JS, Jr (Mar 2005). "Canine model of surgical stress response comparing standard laparoscopic, microlaparoscopic, and hand-assisted laparoscopic nephrectomy". Urology. 65 (3): 600–3. doi:10.1016/j.urology.2004.10.021. PMID   15780400.
  12. Yoo, KY; Lee, MK; Jeong, CW; Kim, SJ; Jeong, ST; Shin, MH; Lee, JK; Lee, J (Sep 2009). "Anaesthetic requirement and stress hormone responses in patients undergoing lumbar spine surgery: anterior vs. posterior approach". Acta Anaesthesiologica Scandinavica. 53 (8): 1012–7. doi:10.1111/j.1399-6576.2009.01993.x. PMID   19426236. S2CID   46468509.
  13. Tallant, A; Ambros, B; Freire, C; Sakals, S (July 2016). "Comparison of intraoperative and postoperative pain during canine ovariohysterectomy and ovariectomy". The Canadian Veterinary Journal. 57 (7): 741–6. PMC   4904810 . PMID   27429462.
  14. Krikri, A; Alexopoulos, V; Zoumakis, E; Katsaronis, P; Balafas, E; Kouraklis, G; Karayannacos, PE; Chrousos, GP; Skalkeas, G (2013). "Laparoscopic vs. open abdominal surgery in male pigs: marked differences in cortisol and catecholamine response depending on the size of surgical incision". Hormones. 12 (2): 283–91. doi: 10.14310/horm.2002.1412 . PMID   23933697.
  15. Shivley, Jacob M.; Richardson, Jodi M.; Woodruff, Kimberly A.; Brookshire, Wilson C.; Meyer, Robert E.; Smith, David R. (28 October 2018). "Sharp transection of the suspensory ligament as an alternative to digital strumming during canine ovariohysterectomy". Veterinary Surgery. 48 (2): 216–221. doi:10.1111/vsu.13121. PMID   30370635. S2CID   53098012.
  16. Del Romero, Ayla; Cuervo, Belén; Peláez, Pau; Miguel, Laura; Torres, Marta; Yeste, Marc; Rivera del Alamo, Maria Montserrat; Rubio, Camila P.; Rubio, Mónica (27 November 2020). "Changes in Acute Phase Proteins in Bitches after Laparoscopic, Midline, and Flank Ovariectomy Using the Same Method for Hemostasis". Animals. 10 (12): 2223. doi: 10.3390/ani10122223 . PMC   7761362 . PMID   33260846.
  17. Crozier, TA; Müller, JE; Quittkat, D; Sydow, M; Wuttke, W; Kettler, D (Sep 1994). "[Total intravenous anesthesia with methohexital-alfentanil or propofol-alfentanil in hypogastric laparotomy. Clinical aspects and the effects of stress reaction]". Der Anaesthesist. 43 (9): 594–604. doi:10.1007/s001010050098. PMID   7978186. S2CID   38923309.
  18. Goldmann, A; Hoehne, C; Fritz, GA; Unger, J; Ahlers, O; Nachtigall, I; Boemke, W (Sep 2008). "Combined vs. Isoflurane/Fentanyl anesthesia for major abdominal surgery: Effects on hormones and hemodynamics". Medical Science Monitor. 14 (9): CR445–52. PMID   18758414.
  19. Ledowski, T; Bein, B; Hanss, R; Paris, A; Fudickar, W; Scholz, J; Tonner, PH (Dec 2005). "Neuroendocrine stress response and heart rate variability: a comparison of total intravenous versus balanced anesthesia". Anesthesia and Analgesia. 101 (6): 1700–5. doi: 10.1213/01.ane.0000184041.32175.14 . PMID   16301244. S2CID   23182118.
  20. Väisänen, M; Raekallio, M; Kuusela, E; Huttunen, P; Leppäluoto, J; Kirves, P; Vainio, O (Jul 2002). "Evaluation of the perioperative stress response in dogs administered medetomidine or acepromazine as part of the preanesthetic medication". American Journal of Veterinary Research. 63 (7): 969–75. doi: 10.2460/ajvr.2002.63.969 . PMID   12118677.
  21. Moldal, ER; Eriksen, T; Kirpensteijn, J; Nødtvedt, A; Kristensen, AT; Sparta, FM; Haga, HA (Jan 2013). "Intratesticular and subcutaneous lidocaine alters the intraoperative haemodynamic responses and heart rate variability in male cats undergoing castration". Veterinary Anaesthesia and Analgesia. 40 (1): 63–73. doi:10.1111/j.1467-2995.2012.00773.x. PMID   23033908.
  22. Väisänen, Misse (2006). Perioperative stress in dogs : different aspects of manifestation and characteristics with medetomidine and acepromazine preanaesthetic medication (PDF). Helsinki: University Printing House, Helsinki, Finland. ISBN   978-952-10-2975-2.
  23. Joris, JL; Chiche, JD; Canivet, JL; Jacquet, NJ; Legros, JJ; Lamy, ML (Nov 1998). "Hemodynamic changes induced by laparoscopy and their endocrine correlates: effects of clonidine". Journal of the American College of Cardiology. 32 (5): 1389–96. doi: 10.1016/s0735-1097(98)00406-9 . PMID   9809953.
  24. Kaka, Ubedullah; Rahman, Nor-Alimah; Abubakar, Adamu Abdul; Goh, Yong Meng; Fakurazi, Sharida; Omar, Mohamed Ariff; Chen, Hui Cheng (April 2018). "Pre-emptive multimodal analgesia with tramadol and ketamine–lidocaine infusion for suppression of central sensitization in a dog model of ovariohysterectomy". Journal of Pain Research. 11: 743–752. doi: 10.2147/JPR.S152475 . ISSN   1178-7090. PMC   5905489 . PMID   29695926.
  25. Fizzano, Kristen M.; Claude, Andrew K.; Kuo, Lan-Hsin; Eells, Jeffrey B.; Hinz, Simone B.; Thames, Brittany E.; Ross, Matthew K.; Linford, Robert L.; Wills, Robert W.; Olivier, Alicia K.; Archer, Todd M. (September 2017). "Evaluation of a modified infraorbital approach for a maxillary nerve block for rhinoscopy with nasal biopsy of dogs". American Journal of Veterinary Research. 78 (9): 1025–1035. doi:10.2460/ajvr.78.9.1025. PMID   28836847. S2CID   10247473.
  26. Sández, I; Soto, M; Torralbo, D; Rioja, E (April 2018). "Effect of different analgesic techniques on hemodynamic variables recorded with an esophageal Doppler monitor during ovariohysterectomy in dogs". The Canadian Veterinary Journal. 59 (4): 419–424. PMC   5855226 . PMID   29606730.
  27. Kropf, Josephine; Hughes, J.M. Lynne (17 December 2018). "Effects of midazolam on cardiovascular responses and isoflurane requirement during elective ovariohysterectomy in dogs". Irish Veterinary Journal. 71 (1): 26. doi: 10.1186/s13620-018-0136-y . PMC   6297997 . PMID   30568789.
  28. Cicirelli, V; Lacalandra, GM; Aiudi, GG (14 October 2021). "The effect of splash block on the need for analgesia in dogs subjected to video-assisted ovariectomy". Veterinary Medicine and Science. 8 (1): 104–109. doi:10.1002/vms3.637. PMC   8788979 . PMID   34647415. S2CID   238860439.
  29. Ledowski, Thomas; Bein, Berthold; Hanss, Robert; Paris, Andrea; Fudickar, Wolfgang; Scholz, Jens; Tonner, Peter H. (December 2005). "Neuroendocrine Stress Response and Heart Rate Variability: A Comparison of Total Intravenous Versus Balanced Anesthesia". Anesthesia & Analgesia. 101 (6): 1700–1705. doi: 10.1213/01.ane.0000184041.32175.14 . PMID   16301244. S2CID   23182118.
  30. Kjelgaard-Hansen, M; Strom, H; Mikkelsen, LF; Eriksen, T; Jensen, AL; Luntang-Jensen, M (September 2013). "Canine serum C-reactive protein as a quantitative marker of the inflammatory stimulus of aseptic elective soft tissue surgery". Veterinary Clinical Pathology. 42 (3): 342–5. doi:10.1111/vcp.12063. PMID   23899087.
  31. Horta, RS; Figueiredo, MS; Lavalle, GE; Costa, MP; Cunha, RM; Araújo, RB (24 June 2015). "Surgical stress and postoperative complications related to regional and radical mastectomy in dogs". Acta Veterinaria Scandinavica. 57 (1): 34. doi: 10.1186/s13028-015-0121-3 . PMC   4480898 . PMID   26104069.
  32. Marana, E; Scambia, G; Maussier, ML; Parpaglioni, R; Ferrandina, G; Meo, F; Sciarra, M; Marana, R (May 2003). "Neuroendocrine stress response in patients undergoing benign ovarian cyst surgery by laparoscopy, minilaparotomy, and laparotomy". The Journal of the American Association of Gynecologic Laparoscopists. 10 (2): 159–65. doi:10.1016/s1074-3804(05)60291-5. PMID   12732764.
  33. Holzer-Petsche, U; Brodacz, B (March 1999). "Traction on the mesentery as a model of visceral nociception". Pain. 80 (1–2): 319–28. doi:10.1016/s0304-3959(98)00233-4. PMID   10204745. S2CID   36438315.
  34. Chernow, B; Alexander, HR; Smallridge, RC; Thompson, WR; Cook, D; Beardsley, D; Fink, MP; Lake, CR; Fletcher, JR (July 1987). "Hormonal responses to graded surgical stress". Archives of Internal Medicine. 147 (7): 1273–8. doi:10.1001/archinte.147.7.1273. PMID   3606284.
  35. JACOBSEN, STINE; NIELSEN, JON VEDDING; KJELGAARD-HANSEN, MADS; TOELBOELL, TRINE; FJELDBORG, JULIE; HALLING-THOMSEN, MAJ; MARTINUSSEN, TORBEN; THOEFNER, MARTIN BANG (August 2009). "Acute Phase Response to Surgery of Varying Intensity in Horses: A Preliminary Study". Veterinary Surgery. 38 (6): 762–769. doi:10.1111/j.1532-950X.2009.00564.x. PMID   19674420.
  36. Yoder, B; Wolf JS, Jr (March 2005). "Canine model of surgical stress response comparing standard laparoscopic, microlaparoscopic, and hand-assisted laparoscopic nephrectomy". Urology. 65 (3): 600–3. doi:10.1016/j.urology.2004.10.021. PMID   15780400.
  37. Höglund, OV; Hagman, R; Olsson, K; Olsson, U; Lagerstedt, AS (Aug 8, 2014). "Intraoperative Changes in Blood Pressure, Heart Rate, Plasma Vasopressin, and Urinary Noradrenalin During Elective Ovariohysterectomy in Dogs: Repeatability at Removal of the 1st and 2nd Ovary". Veterinary Surgery. 43 (7): 852–9. doi:10.1111/j.1532-950X.2014.12264.x. PMID   25130060.
  38. Joris, JL; Chiche, JD; Canivet, JL; Jacquet, NJ; Legros, JJ; Lamy, ML (November 1998). "Hemodynamic changes induced by laparoscopy and their endocrine correlates: effects of clonidine". Journal of the American College of Cardiology. 32 (5): 1389–96. doi: 10.1016/s0735-1097(98)00406-9 . PMID   9809953.
  39. Cuthbertson, DP (1930). "The disturbance of metabolism produced by bony and non-bony injury, with notes on certain abnormal conditions of bone". The Biochemical Journal. 24 (4): 1244–63. doi:10.1042/bj0241244. PMC   1254622 . PMID   16744448.
  40. Wilmore, DW (Nov 2002). "From Cuthbertson to fast-track surgery: 70 years of progress in reducing stress in surgical patients". Annals of Surgery. 236 (5): 643–8. doi:10.1097/00000658-200211000-00015. PMC   1422623 . PMID   12409671.
  41. Kamei, K; Nimura, Y; Nagino, M; Aono, K; Nakashima, I (January 2002). "Surgical stress reduces mortality from endotoxin shock". Langenbeck's Archives of Surgery. 386 (7): 512–7. doi:10.1007/s00423-001-0261-y. PMID   11819109. S2CID   1739773.
  42. Kehlet, H (December 1991). "The surgical stress response: should it be prevented?". Canadian Journal of Surgery. Journal Canadien de Chirurgie. 34 (6): 565–7. PMID   1747833.
  43. Kehlet, H (May 1997). "Multimodal approach to control postoperative pathophysiology and rehabilitation". British Journal of Anaesthesia. 78 (5): 606–617. doi: 10.1093/bja/78.5.606 . PMID   9175983.