Susan Daniel

Last updated
Susan Daniel
Born
Alma mater Lehigh University
Scientific career
Institutions Cornell University
Texas A&M University
Thesis The effect of vibration on liquid drop motion  (2005)
Website Daniel Team

Susan Daniel is an American chemical engineer who is a Professor of Chemical and Biomolecular Engineering at Cornell University. Her research considers membrane biophysics and bioelectronic devices. During the COVID-19 pandemic Daniel used bioelectronic devices to develop COVID-19 disease drugs.

Contents

Early life and education

Daniel was born in suburban Philadelphia. [1] Her father was an immigrant from Germany, who relocated to Pennsylvania on leaving Europe. [1] Daniel was the first member of her family to attend college. [1] During high school she became inspired by chemistry. [1] She was an undergraduate student in chemical engineering at Lehigh University. [2] She wondered whether she might be interested in research, and visited the office of Manoj Chaudhury. He asked her to study the movement of liquid droplets on various surfaces with different surface tension. Remarkably, her first journey into research ended up published in Science , before she had even earned her master's degree. She remained at Lehigh University for her doctoral research, continuing to study the motion of liquid droplets on surfaces with different wettabilities. [1] As part of her droplet research, she developed technologies to manipulate fluids in miniature devices. [3] The devices she developed allowed the precise mixing of droplets as well as thermosensitive reactions. [3] Her research attracted considerable attention, and she started working with Pierre-Gilles de Gennes on how to create ratchet motion with the droplets. [3]

Research and career

After completing her doctorate Daniel joined the laboratory of Paul Cremer at Texas A&M University. Here she shifted focus, concentrating on biological interfaces and the development of cell membranes. [3] Specifically, Daniel worked on solid-supported lipid bilayers. She showed that an artificial glycocalyx-like nanostructure could serve as a size-selective filter for protein binding. [3] This achievement inspired Daniel to use the solid-supported lipid bilayers to separate membrane-bound species via electrophoresis. [3]

In 2007 Daniel joined Cornell University in the Smith School of Chemical and Biomolecular Engineering, where she leads two distinct research programmes, one focused on biological function and the other on surface science. She is interested in the role of membrane lipids in biological interactions, with a focus on how viruses interact with cell membranes. Her motivation to study virus – membrane interactions lies in the potential to hijack the virus and use it to perform specific tasks. [1]

She has identified the speed at which viral genomes are transferred out of viruses and into the cell membranes. Cell membranes contain a variety of proteins and biomolecules, which are held within a matrix of lipid phases. Daniel believes that the interactions of these lipid phases control the regulation of the function of the cell membrane. [1] Alongside her biology-focussed work, Daniel investigates the motion and coalescence of droplets. [1] [3]

Daniel pioneered the development of biomembrane platforms that permit the recreation of cellular processes on a chip. [4] During the COVID-19 pandemic, Daniel worked with Róisín Owens, a biochemist she met whilst a visiting scholar at the École nationale supérieure des mines de Saint-Étienne, on devices that allowed the rapid testing of potential COVID-19 drugs. [5] Daniel used membrane fusion to identify a specific targets for anti-viral drugs. [6] To continue her studies of coronaviruses, she was awarded seed-funding from the Office of the Vice Provost for Research (OVPR). [7] [8]

Academic service

Daniel is involved with various initiatives to promote women in science. On arriving at Cornell University she became interested in the women's engineering group, and is a member of Women in Science and Engineering (WISE) at Cornell. [1] She was appointed Director of Graduate Studies at Cornell University in 2016, and under her leadership she recruited the most diverse class in the history of the school of Chemical and Biomolecular Engineering. [4]

Awards and honours

Selected publications

Related Research Articles

<span class="mw-page-title-main">Peripheral membrane protein</span> Membrane proteins that adhere temporarily to membranes with which they are associated

Peripheral membrane proteins, or extrinsic membrane proteins, are membrane proteins that adhere only temporarily to the biological membrane with which they are associated. These proteins attach to integral membrane proteins, or penetrate the peripheral regions of the lipid bilayer. The regulatory protein subunits of many ion channels and transmembrane receptors, for example, may be defined as peripheral membrane proteins. In contrast to integral membrane proteins, peripheral membrane proteins tend to collect in the water-soluble component, or fraction, of all the proteins extracted during a protein purification procedure. Proteins with GPI anchors are an exception to this rule and can have purification properties similar to those of integral membrane proteins.

In biology, caveolae, which are a special type of lipid raft, are small invaginations of the plasma membrane in the cells of many vertebrates. They are the most abundant surface feature of many vertebrate cell types, especially endothelial cells, adipocytes and embryonic notochord cells. They were originally discovered by E. Yamada in 1955.

<span class="mw-page-title-main">Molecular biophysics</span> Interdisciplinary research area

Molecular biophysics is a rapidly evolving interdisciplinary area of research that combines concepts in physics, chemistry, engineering, mathematics and biology. It seeks to understand biomolecular systems and explain biological function in terms of molecular structure, structural organization, and dynamic behaviour at various levels of complexity. This discipline covers topics such as the measurement of molecular forces, molecular associations, allosteric interactions, Brownian motion, and cable theory. Additional areas of study can be found on Outline of Biophysics. The discipline has required development of specialized equipment and procedures capable of imaging and manipulating minute living structures, as well as novel experimental approaches.

Biomolecular engineering is the application of engineering principles and practices to the purposeful manipulation of molecules of biological origin. Biomolecular engineers integrate knowledge of biological processes with the core knowledge of chemical engineering in order to focus on molecular level solutions to issues and problems in the life sciences related to the environment, agriculture, energy, industry, food production, biotechnology and medicine.

A model lipid bilayer is any bilayer assembled in vitro, as opposed to the bilayer of natural cell membranes or covering various sub-cellular structures like the nucleus. They are used to study the fundamental properties of biological membranes in a simplified and well-controlled environment, and increasingly in bottom-up synthetic biology for the construction of artificial cells. A model bilayer can be made with either synthetic or natural lipids. The simplest model systems contain only a single pure synthetic lipid. More physiologically relevant model bilayers can be made with mixtures of several synthetic or natural lipids.

Lipid droplets, also referred to as lipid bodies, oil bodies or adiposomes, are lipid-rich cellular organelles that regulate the storage and hydrolysis of neutral lipids and are found largely in the adipose tissue. They also serve as a reservoir for cholesterol and acyl-glycerols for membrane formation and maintenance. Lipid droplets are found in all eukaryotic organisms and store a large portion of lipids in mammalian adipocytes. Initially, these lipid droplets were considered to merely serve as fat depots, but since the discovery in the 1990s of proteins in the lipid droplet coat that regulate lipid droplet dynamics and lipid metabolism, lipid droplets are seen as highly dynamic organelles that play a very important role in the regulation of intracellular lipid storage and lipid metabolism. The role of lipid droplets outside of lipid and cholesterol storage has recently begun to be elucidated and includes a close association to inflammatory responses through the synthesis and metabolism of eicosanoids and to metabolic disorders such as obesity, cancer, and atherosclerosis. In non-adipocytes, lipid droplets are known to play a role in protection from lipotoxicity by storage of fatty acids in the form of neutral triacylglycerol, which consists of three fatty acids bound to glycerol. Alternatively, fatty acids can be converted to lipid intermediates like diacylglycerol (DAG), ceramides and fatty acyl-CoAs. These lipid intermediates can impair insulin signaling, which is referred to as lipid-induced insulin resistance and lipotoxicity. Lipid droplets also serve as platforms for protein binding and degradation. Finally, lipid droplets are known to be exploited by pathogens such as the hepatitis C virus, the dengue virus and Chlamydia trachomatis among others.

<span class="mw-page-title-main">John A. Quinn</span>

John A. Quinn, Ph.D. was the Robert D. Bent Professor Emeritus of Chemical and Biomolecular Engineering at the University of Pennsylvania School of Engineering and Applied Science. He was a leader in the fields of mass transfer and membrane transport in synthetic membranes since the 1960s. In the early phase of his career at the University of Illinois, Quinn and his students devised simple, elegant experiments to elucidate the role of the interface in mass transfer between phases. In later work at Penn, he applied these insights to problems of engineering and biological significance involving chemical reaction and diffusion within and through both finely porous and reactive membranes. His chemical engineering science has informed matters as far afield as the separation of chiral pharmaceuticals and the behavior of cells at interfaces.

Tobias C. Walther is the chair of the cell biology program at Sloan Kettering Institute in New York City and a professor at Weill Cornell School of Medicine, where he co-directs the Farese and Walther lab. He has been a Howard Hughes Medical Institute investigator since 2015. His primary responsibilities are to provide leadership in research and teaching in the scientific fields of metabolism, membrane biology and lipids.

Paul H Steen was an engineer and scientist. He held the Maxwell M. Upson Chair in Engineering at Cornell University. Steen received degrees in Engineering and English Literature from Brown University, his PhD from Johns Hopkins University, and postdoctoral training at Stanford University.

Self-propulsion is the autonomous displacement of nano-, micro- and macroscopic natural and artificial objects, containing their own means of motion. Self-propulsion is driven mainly by interfacial phenomena. Various mechanisms of self-propelling have been introduced and investigated, which exploited phoretic effects, gradient surfaces, breaking the wetting symmetry of a droplet on a surface, the Leidenfrost effect, the self-generated hydrodynamic and chemical fields originating from the geometrical confinements, and soluto- and thermo-capillary Marangoni flows. Self-propelled system demonstrate a potential as micro-fluidics devices and micro-mixers. Self-propelled liquid marbles have been demonstrated.

<span class="mw-page-title-main">Mei Hong (chemist)</span> Chinese-American chemist

Mei Hong is a Chinese-American biophysical chemist and professor of chemistry at the Massachusetts Institute of Technology. She is known for her creative development and application of solid-state nuclear magnetic resonance (ssNMR) spectroscopy to elucidate the structures and mechanisms of membrane proteins, plant cell walls, and amyloid proteins. She has received a number of recognitions for her work, including the American Chemical Society Nakanishi Prize in 2021, Günther Laukien Prize in 2014, the Protein Society Young Investigator award in 2012, and the American Chemical Society’s Pure Chemistry award in 2003.

<span class="mw-page-title-main">Linsey Marr</span> American scientist

Linsey Chen Marr is an American scientist who is the Charles P. Lunsford Professor of Civil and Environmental Engineering at Virginia Tech. Her research considers the interaction of nanomaterials and viruses with the atmosphere. During the COVID-19 pandemic Marr studied how SARS-CoV-2 and other airborne pathogens could be transported in air. In 2023, she was elected to the National Academy of Engineering and named a MacArthur Fellow.

<span class="mw-page-title-main">Lynden Archer</span> American engineer

Lynden A. Archer is a chemical engineer, Joseph Silbert Dean of Engineering, David Croll Director of the Energy Systems Institute, and professor of chemical engineering at Cornell University. He became a fellow of the American Physical Society in 2007 and was elected into the National Academy of Engineering in 2018. Archer's research covers polymer and hybrid materials and finds applications in energy storage technologies. His h-index is 92 by Google Scholar.

<span class="mw-page-title-main">Fengqi You</span> Professor and computer scientist

Fengqi You is a professor and holds the Roxanne E. and Michael J. Zak Chair at Cornell University in the United States. His research focuses on systems engineering and data science. According to Google Scholar, his h-index is 78.

<span class="mw-page-title-main">Sylvie Roke</span> Dutch chemist and physicist specialized in photochemistry

Sylvie Roke is a Dutch chemist and physicist specialized in photonics and aqueous systems. As a full professor she holds Julia Jacobi Chair of Photomedicine at EPFL and is the director of the Laboratory for fundamental BioPhotonics.

Linda Jean Broadbelt is an American chemical engineer who is the Sarah Rebecca Roland Professor and associate dean for research of the McCormick School of Engineering and Applied Science at Northwestern University. Her research considers kinetics modeling, polymerization and catalysis.

Kalina A. Hristova is a Bulgarian–American engineer. She is a professor of materials science and engineering at Johns Hopkins University's Whiting School of Engineering.

<span class="mw-page-title-main">Intracellular delivery</span> Scientific research area

Intracellular delivery is the process of introducing external materials into living cells. Materials that are delivered into cells include nucleic acids, proteins, peptides, impermeable small molecules, synthetic nanomaterials, organelles, and micron-scale tracers, devices and objects. Such molecules and materials can be used to investigate cellular behavior, engineer cell operations or correct a pathological function.

Kathryn Ann Whitehead is an American chemical engineer who is a professor at Carnegie Mellon University. Her research considers the development of nanomaterial-based drug delivery systems for gene therapy, oral macromolecular delivery systems, and maternal and infant therapeutics. She is an elected Fellow of the American Institute for Medical and Biological Engineering in 2021 and Fellow of the Controlled Release Society.

<span class="mw-page-title-main">Helen Hansma</span>

Helen Greenwood Hansma is an American biologist, biophysicist, biochemist, and academic. She is a Researcher Emeritus and Associate Adjunct Professor Emeritus at the University of California, Santa Barbara.

References