The Symbol Nomenclature For Glycans (SNFG) [1] is a community-curated standard for the depiction of simple monosaccharides and complex carbohydrates (glycans) using various colored-coded, geometric shapes, along with defined text additions. [2] [3] It is hosted by the National Center for Biotechnology Information at the NCBI-Glycans Page. [4] It is curated by an international groups of researchers in the field that are collectively called the SNFG Discussion Group. The overall goal of the SNFG is to:
The SNFG consists of a table that provides color coded symbols for various monosaccharides that are commonly found in nature. It also includes a set of footnotes that describe rules for rendering glycans, including guidelines on how to modify the base set of symbols depicted in the table. These footnotes are organized into 10 themes that provide streamlined recommendations for: i. general usage of the SNFG; ii. CMYK / RGB color codes; iii. symbol colors and shapes; iv. ring configurations; v. bond linkage presentation; vi. sialic acids; vii. glycan modifications; viii. amino substitutions; ix. handling ambiguous or partially defined glycans; and x. depicting non-glycan entities using SNFG renderings. More details are available at the main SNFG webpage, [1] which is periodically updated with additional directions.
The monosaccharides can be linked together to describe complex carbohydrate structures or glycans. More exhaustive cases for mammalian species, other eukaryotes, plants and microbes are considered at the main SNFG page. [1]
Several software tools have been developed to support SNFG implementation by the community including:
The SNFG nomenclature has also been adopted as a standard by major databases and journals in the Biomedical Sciences.
In 1978, Stuart Kornfeld and colleagues at the Washington University School of Medicine presented a system for symbolic representation of vertebrate glycans. [10] This system gained popularity when it was implemented as a core method for glycan representation in the NCBI text book Essentials of Glycobiology edited by Ajit Varki (University of California, San Diego) and colleagues. [11] While the first edition of this text published in 1999 used black-and-white symbols similar to the Kornfeld system, color was introduced in the second edition of the text (2009). The advantage of color is that different monosaccharide stereoisomers could now be depicted using the same shape, only with different colors. The system of carbohydrate representation was adopted and widely disseminated by many including the NIGMS-funded Consortium for Functional Glycomics, and thus was often referred to as "CFG Nomenclature". This color representation was vastly expanded in the third edition of the text to include 49 new monosaccharides that appear mostly in non-vertebrates, microbes and plants. Inputs and recommendations from a number of scientists beyond the editors of the Essentials textbook was included in this implementation, and the release of the expanded glycan symbol system was coordinated with the IUPAC Carbohydrate Nomenclature committee. For long-term development of this symbol nomenclature and standardization of glycan representation in the Glycosciences, in 2015, the Essentials editors suggested that the representation be formally called SNFG ('Symbol Nomenclature For Glycans'), and future development be entrusted to a global community of scientists. To aid this development, each of the SNFG monosaccharide symbols was linked to PubChem entries at NCBI/NLM and a dedicated website at NCBI was established for future SNFG updates. [1] Thus, the development of the SNFG is currently undertaken by an international community of scientist that are called the SNFG Discussion Group.
Glycomics is the comprehensive study of glycomes, including genetic, physiologic, pathologic, and other aspects. Glycomics "is the systematic study of all glycan structures of a given cell type or organism" and is a subset of glycobiology. The term glycomics is derived from the chemical prefix for sweetness or a sugar, "glyco-", and was formed to follow the omics naming convention established by genomics and proteomics.
A glycome is the entire complement or complete set of all sugars, whether free or chemically bound in more complex molecules, of an organism. An alternative definition is the entirety of carbohydrates in a cell. The glycome may in fact be one of the most complex entities in nature. "Glycomics, analogous to genomics and proteomics, is the systematic study of all glycan structures of a given cell type or organism" and is a subset of glycobiology.
The Consortium for Functional Glycomics (CFG) is a large research initiative funded in 2001 by a glue grant from the National Institute of General Medical Sciences (NIGMS) to “define paradigms by which protein-carbohydrate interactions mediate cell communication”. To achieve this goal, the CFG studies the functions of:
Defined in the narrowest sense, glycobiology is the study of the structure, biosynthesis, and biology of saccharides that are widely distributed in nature. Sugars or saccharides are essential components of all living things and aspects of the various roles they play in biology are researched in various medical, biochemical and biotechnological fields.
The terms glycans and polysaccharides are defined by IUPAC as synonyms meaning "compounds consisting of a large number of monosaccharides linked glycosidically". However, in practice the term glycan may also be used to refer to the carbohydrate portion of a glycoconjugate, such as a glycoprotein, glycolipid, or a proteoglycan, even if the carbohydrate is only an oligosaccharide. Glycans usually consist solely of O-glycosidic linkages of monosaccharides. For example, cellulose is a glycan composed of β-1,4-linked D-glucose, and chitin is a glycan composed of β-1,4-linked N-acetyl-D-glucosamine. Glycans can be homo- or heteropolymers of monosaccharide residues, and can be linear or branched.
Glycoinformatics is a field of bioinformatics that pertains to the study of carbohydrates involved in protein post-translational modification. It broadly includes database, software, and algorithm development for the study of carbohydrate structures, glycoconjugates, enzymatic carbohydrate synthesis and degradation, as well as carbohydrate interactions. Conventional usage of the term does not currently include the treatment of carbohydrates from the better-known nutritive aspect.
Ajit Varki is a physician-scientist who is distinguished professor of medicine and cellular and molecular medicine, founding co-director of the Glycobiology Research and Training Center at the University of California, San Diego (UCSD), and founding co-director of the UCSD/Salk Center for Academic Research and Training in Anthropogeny (CARTA). He is also executive editor of the textbook Essentials of Glycobiology and distinguished visiting professor at the Indian Institute of Technology in Madras and the National Center for Biological Sciences in Bangalore. He is a specialist advisor to the Human Gene Nomenclature Committee.
Glycopeptides are peptides that contain carbohydrate moieties (glycans) covalently attached to the side chains of the amino acid residues that constitute the peptide.
Translational glycobiology or applied glycobiology is the branch of glycobiology and glycochemistry that focuses on developing new pharmaceuticals through glycomics and glycoengineering. Although research in this field presents many difficulties, translational glycobiology presents applications with therapeutic glycoconjugates, with treating various bone diseases, and developing therapeutic cancer vaccines and other targeted therapies. Some mechanisms of action include using the glycan for drug targeting, engineering protein glycosylation for better efficacy, and glycans as drugs themselves.
Carbohydrate Structure Database (CSDB) is a free curated database and service platform in glycoinformatics, launched in 2005 by a group of Russian scientists from N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences. CSDB stores published structural, taxonomical, bibliographic and NMR-spectroscopic data on natural carbohydrates and carbohydrate-related molecules.
In biochemistry, paucimannosylation is an enzymatic post-translational modification involving the attachment of relatively simple mannose (Man) and N-Acetylglucosamine (GlcNAc) containing carbohydrates (glycans) to proteins. The paucimannosidic glycans may also be modified with other types of monosaccharides including fucose (Fuc) and xylose (Xyl) depending on the species, tissue and cell origin.
The Minimum Information Required About a Glycomics Experiment (MIRAGE) initiative is part of the Minimum Information Standards and specifically applies to guidelines for reporting on a glycomics experiment. The initiative is supported by the Beilstein Institute for the Advancement of Chemical Sciences. The MIRAGE project focuses on the development of publication guidelines for interaction and structural glycomics data as well as the development of data exchange formats. The project was launched in 2011 in Seattle and set off with the description of the aims of the MIRAGE project.
Glycan arrays, like that offered by the Consortium for Functional Glycomics (CFG), National Center for Functional Glycomics (NCFG) and Z Biotech, LLC, contain carbohydrate compounds that can be screened with lectins, antibodies or cell receptors to define carbohydrate specificity and identify ligands. Glycan array screening works in much the same way as other microarray that is used for instance to study gene expression DNA microarrays or protein interaction Protein microarrays.
Harry Schachter FRSC was a Canadian biochemist and glycobiologist. He was professor at the University of Toronto and at the Hospital For Sick Children in Toronto.
Charles E. Warren was an assistant professor of biochemistry and molecular biology at the University of New Hampshire.
Ten Feizi is a Turkish Cypriot/British molecular biologist who is Professor and Director of the Glycosciences Laboratory at Imperial College London. Her research considers the structure and function of glycans. She was awarded the Society for Glycobiology Rosalind Kornfeld award in 2014. She was also awarded the Fellowship of the Academy of Medical Sciences in 2021.
Glycan-Protein interactions represent a class of biomolecular interactions that occur between free or protein-bound glycans and their cognate binding partners. Intramolecular glycan-protein (protein-glycan) interactions occur between glycans and proteins that they are covalently attached to. Together with protein-protein interactions, they form a mechanistic basis for many essential cell processes, especially for cell-cell interactions and host-cell interactions. For instance, SARS-CoV-2, the causative agent of COVID-19, employs its extensively glycosylated spike (S) protein to bind to the ACE2 receptor, allowing it to enter host cells. The spike protein is a trimeric structure, with each subunit containing 22 N-glycosylation sites, making it an attractive target for vaccine search.
Glycan nomenclature is the systematic naming of glycans, which are carbohydrate-based polymers made by all living organisms. In general glycans can be represented in (i) text formats, these include commonly used CarbBank, IUPAC name, and several other types; and (ii) symbol formats, these are consisting of Symbol Nomenclature For Glycans and Oxford Notations.
Rosalind Hauk Kornfeld (1935–2007) was a scientist at Washington University in St. Louis known for her research determining the structure and formation of oligosaccharides. The Society of Glycobiology annually awards a lifetime achievement award in her honor.
Nicki Packer FRSC is an Australian college professor and researcher. She currently serves as a distinguished professor of glycoproteomics in the School of Natural Sciences at Macquarie University and principal research leader at Griffith University's Institute for Glycomics. Packer is a Fellow of the Royal Society of Chemistry and in 2021 received the Distinguished Achievement in Proteomic Sciences Award from the Human Proteome Organization. Her research focuses on biological functional of glycoconjugates by linking glycomics with proteomics and bioinformatics.