In mathematics and related subjects, understanding a mathematical expression depends on an understanding of symbols of grouping, such as parentheses (), brackets [], and braces {}. [1] These same symbols are also used in ways where they are not symbols of grouping. For example, in the expression 3(x+y) the parentheses are symbols of grouping, but in the expression (3, 5) the parentheses may indicate an open interval.
The most common symbols of grouping are the parentheses and the brackets, and the brackets are usually used to avoid too many repeated parentheses. For example, to indicate the product of binomials, parentheses are usually used, thus: . But if one of the binomials itself contains parentheses, as in one or more pairs of parentheses may be replaced by brackets, thus: . Beyond elementary mathematics, brackets are mostly used for other purposes, e.g. to denote a closed interval, or an equivalence class, so they appear rarely for grouping.
The usage of the word "parentheses" varies from country to country. In the United States, the word parentheses (singular "parenthesis") is used for the curved symbol of grouping, but in many other countries the curved symbol of grouping is called a "bracket" and the symbol of grouping with two right angles joined is called a "square bracket".
The symbol of grouping knows as "braces" has two major uses. If two of these symbols are used, one on the left and the mirror image of it on the right, it almost always indicates a set, as in , the set containing three members, , , and . But if it is used only on the left, it groups two or more simultaneous equations.
There are other symbols of grouping. One is the bar above an expression, as in the square root sign in which the bar is a symbol of grouping. For example √p+q is the square root of the sum. The bar is also a symbol of grouping in repeated decimal digits. A decimal point followed by one or more digits with a bar over them, for example 0.123, represents the repeating decimal 0.123123123... . [2]
A superscript is understood to be grouped as long as it continues in the form of a superscript. For example if an x has a superscript of the forma+b, the sum is the exponent. For example: x2+3, it is understood that the 2+3 is grouped, and that the exponent is the sum of 2 and 3.
These rules are understood by all mathematicians.
In most mathematics, the operations of addition and multiplication are associative.
The associative law for addition, for example, states that . This means that once the associative law is stated, the parentheses are unnecessary and are usually omitted. More generally, any sum, of any number of terms, can be written without parentheses and any product, of any number of factors, can be written without parentheses.
The "hierarchy of operations", also called the "order of operations" is a rule that saves needing an excessive number of symbols of grouping. In its simplest form, if a number had a plus sign on one side and a multiplication sign on the other side, the multiplication acts first. If we were to express this idea using symbols of grouping, the factors in a product. Example: 2+3×4 = 2 +(3×4)=2+12=14.
In understanding expressions without symbols of grouping, it is useful to think of subtraction as addition of the opposite, and to think of division as multiplication by the reciprocal.
In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.
Arithmetic is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th century, Italian mathematician Giuseppe Peano formalized arithmetic with his Peano axioms, which are highly important to the field of mathematical logic today.
Elementary algebra encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables.
Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a product.
In mathematics, a polynomial is an expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1.
Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the dividend, which is divided by the divisor, and the result is called the quotient.
A bracket, as used in British English, is either of two tall fore- or back-facing punctuation marks commonly used to isolate a segment of text or data from its surroundings. Typically deployed in symmetric pairs, an individual bracket may be identified as a 'left' or 'right' bracket or, alternatively, an "opening bracket" or "closing bracket", respectively, depending on the directionality of the context.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.
In mathematics, exponentiation is an operation involving two numbers, the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality
In mathematics and computer programming, the order of operations is a collection of rules that reflect conventions about which procedures to perform first in order to evaluate a given mathematical expression.
Mathematical notation consists of using symbols for representing operations, unspecified numbers, relations, and any other mathematical objects and assembling them into expressions and formulas. Mathematical notation is widely used in mathematics, science, and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way.
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered:
A vinculum is a horizontal line used in mathematical notation for various purposes. It may be placed as an overline over a mathematical expression to indicate that the expression is to be considered grouped together. Historically, vincula were extensively used to group items together, especially in written mathematics, but in modern mathematics this function has almost entirely been replaced by the use of parentheses. It was also used to mark Roman numerals whose values are multiplied by 1,000. Today, however, the common usage of a vinculum to indicate the repetend of a repeating decimal is a significant exception and reflects the original usage.
A fraction represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction consists of an integer numerator, displayed above a line, and a non-zero integer denominator, displayed below that line. If these integers are positive, then the numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. For example, in the fraction 3/4, the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates 3/4 of a cake.
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a sum of (repeated) products. During the expansion, simplifications such as grouping of like terms or cancellations of terms may also be applied. Instead of multiplications, the expansion steps could also involve replacing powers of a sum of terms by the equivalent expression obtained from the binomial formula; this is a shortened form of what would happen if the power were treated as a repeated multiplication, and expanded repeatedly. It is customary to reintroduce powers in the final result when terms involve products of identical symbols.
An overline, overscore, or overbar, is a typographical feature of a horizontal line drawn immediately above the text. In old mathematical notation, an overline was called a vinculum, a notation for grouping symbols which is expressed in modern notation by parentheses, though it persists for symbols under a radical sign. The original use in Ancient Greek was to indicate compositions of Greek letters as Greek numerals. In Latin, it indicates Roman numerals multiplied by a thousand and it forms medieval abbreviations (sigla). Marking one or more words with a continuous line above the characters is sometimes called overstriking, though overstriking generally refers to printing one character on top of an already-printed character.
In mathematics, a basic algebraic operation is any one of the common operations of arithmetic, which include addition, subtraction, multiplication, division, raising to a whole number power, and taking roots. These operations may be performed on numbers, in which case they are often called arithmetic operations. They may also be performed, in a similar way, on variables, algebraic expressions, and more generally, on elements of algebraic structures, such as groups and fields. An algebraic operation may also be defined simply as a function from a Cartesian power of a set to the same set.
In mathematics, brackets of various typographical forms, such as parentheses ( ), square brackets [ ], braces { } and angle brackets ⟨ ⟩, are frequently used in mathematical notation. Generally, such bracketing denotes some form of grouping: in evaluating an expression containing a bracketed sub-expression, the operators in the sub-expression take precedence over those surrounding it. Sometimes, for the clarity of reading, different kinds of brackets are used to express the same meaning of precedence in a single expression with deep nesting of sub-expressions.