System of nonlinear differential equations
A Synergistic system (or S-system ) [ 1] is a collection of ordinary nonlinear differential equations
d x i d t = α i ∏ j = 1 n + m x i g i j − β j ∏ j = 1 n + m x i h i j ( i = 1 , . . . , n ) {\displaystyle {\frac {dx_{i}}{dt}}=\alpha _{i}\prod _{j=1}^{n+m}x_{i}^{g_{ij}}-\beta _{j}\prod _{j=1}^{n+m}x_{i}^{h_{ij}}~~~~~(i=1,...,n)}
where the x i {\displaystyle x_{i}} are positive real, α i {\displaystyle \alpha _{i}} and β i {\displaystyle \beta _{i}} are non-negative real, called the rate constant (or, kinetic rates ) and g i j {\displaystyle g_{ij}} and h i j {\displaystyle h_{ij}} are real exponential, called kinetic orders . These terms are based on the chemical equilibrium [ 2]
One variable S-system [ 3] In the case of n = 1 ( i = 1 ) {\displaystyle n=1(i=1)} and m = 0 {\displaystyle m=0} , the given S-system equation can be written as
d x d t = α x g − β x h {\displaystyle \ {\frac {dx}{dt}}=\alpha x^{g}-\beta x^{h}\ }
Under the non-zero steady condition, d x 0 d t = 0 {\displaystyle {\frac {dx_{0}}{dt}}=0} , the following non-linear equation can be transformed into an ordinary differential equation (ODE).
Transformation one variable S-system into a first-order ODE
Let x = e log x = e y {\displaystyle x=e^{\operatorname {log} x}=e^{y}} (with x 0 = e y 0 {\displaystyle x_{0}=e^{y_{0}}} ) Then, given a one-variable S-system is
d y d t = α e ( g − 1 ) y − β e ( h − 1 ) y {\displaystyle {\frac {dy}{dt}}=\alpha e^{(g-1)y}-\beta e^{(h-1)y}}
Apply a non-zero steady condition to the given equation
0 = d y 0 d t = α e ( g − 1 ) y 0 − β e ( h − 1 ) y 0 {\displaystyle 0={\frac {dy_{0}}{dt}}=\alpha e^{(g-1)y_{0}}-\beta e^{(h-1)y_{0}}} , or equivalently α e ( g − 1 ) y 0 = β e ( h − 1 ) y 0 {\displaystyle \alpha e^{(g-1)y_{0}}=\beta e^{(h-1)y_{0}}}
Thus, y 0 = log β − log α g − h {\displaystyle y_{0}={\frac {\operatorname {log} \beta -\operatorname {log} \alpha }{g-h}}} (or, x 0 = ( β α ) 1 g − h {\displaystyle x_{0}=\left({\frac {\beta }{\alpha }}\right)^{\frac {1}{g-h}}} )
If d y d t {\displaystyle {\frac {dy}{dt}}} can be approximated around y = y 0 {\displaystyle y=y_{0}} , remaining the first two terms,
d y d t ≃ α e ( g − 1 ) y 0 + α e ( g − 1 ) y 0 ( g − 1 ) ( y − y 0 ) − β e ( g − 1 ) y 0 − β e ( h − 1 ) y 0 ( h − 1 ) ( y − y 0 ) {\displaystyle {\frac {dy}{dt}}\simeq \alpha e^{(g-1)y_{0}}+\alpha e^{(g-1)y_{0}}(g-1)(y-y_{0})-\beta e^{(g-1)y_{0}}-\beta e^{(h-1)y_{0}}(h-1)(y-y_{0})}
By non-zero steady condition, α e ( g − 1 ) y 0 = β e ( h − 1 ) y 0 {\displaystyle \alpha e^{(g-1)y_{0}}=\beta e^{(h-1)y_{0}}} , a nonlinear one-variable S-system can be transformed into a first-order ODE :
d u d t ≃ ( α e ( g − 1 ) y 0 ( g − h ) ) u = ( F a ) u {\displaystyle {\frac {du}{dt}}\simeq \left(\alpha e^{(g-1)y_{0}}(g-h)\right)u=\left(Fa\right)u}
where F = α e ( g − 1 ) y 0 {\displaystyle F=\alpha e^{(g-1)y_{0}}} , a = g − h {\displaystyle a=g-h} , and u = y − y 0 ≃ x − x 0 x 0 {\displaystyle u=y-y_{0}\simeq {\frac {x-x_{0}}{x_{0}}}} , called a percentage variation .
Two variables S-system [ 3] In the case of n = 2 ( i = 1 , 2 ) {\displaystyle n=2(i=1,2)} and m = 0 {\displaystyle m=0} , the S-system equation can be written as system of (non-linear) differential equations .
{ d x 1 d t = α 1 x 1 g 11 x 2 g 21 − β 1 x 1 h 11 x 2 h 21 d x 2 d t = α 2 x 2 g 21 x 2 g 22 − β 2 x 1 h 21 x 2 h 22 {\displaystyle \left\{{\begin{matrix}{\frac {dx_{1}}{dt}}=\alpha _{1}x_{1}^{g_{11}}x_{2}^{g_{21}}-\beta _{1}x_{1}^{h_{11}}x_{2}^{h_{21}}\ \\{\frac {dx_{2}}{dt}}=\alpha _{2}x_{2}^{g_{21}}x_{2}^{g_{22}}-\beta _{2}x_{1}^{h_{21}}x_{2}^{h_{22}}\end{matrix}}\right.}
Assume non-zero steady condition, d x i 0 d t = 0 {\displaystyle {\frac {dx_{i0}}{dt}}=0} .
Transformation two variables S-system into a second-order ODE
By putting x i = e log x i = e y i {\displaystyle x_{i}=e^{\operatorname {log} x_{i}}=e^{y_{i}}} . The given system of equations can be written as
{ d u 1 d t = c 11 u 1 + c 12 u 2 d u 2 d t = c 21 u 1 + c 22 u 2 {\displaystyle \left\{{\begin{matrix}{\frac {du_{1}}{dt}}=c_{11}u_{1}+c_{12}u_{2}\ \\{\frac {du_{2}}{dt}}=c_{21}u_{1}+c_{22}u_{2}\end{matrix}}\right.}
(where u i = y i − y i 0 {\displaystyle u_{i}=y_{i}-y_{i0}} , u i = y i − y i 0 {\displaystyle u_{i}=y_{i}-y_{i0}} and c i j ( i , j = 1 , 2 ) {\displaystyle c_{ij}(i,j=1,2)} are constant.
Since d 2 u 1 d t 2 = c 11 d u 1 d t + c 12 d u 2 d t {\displaystyle {\frac {d^{2}u_{1}}{dt^{2}}}=c_{11}{\frac {du_{1}}{dt}}+c_{12}{\frac {du_{2}}{dt}}} , the given system of equation can be approximated as a second-order ODE:
d 2 u 1 d t 2 − ( c 11 + c 22 ) d u 1 d t + ( c 11 c 22 − c 12 c 21 ) u 1 = 0 {\displaystyle {\frac {d^{2}u_{1}}{dt^{2}}}-\left(c_{11}+c_{22}\right){\frac {du_{1}}{dt}}+\left(c_{11}c_{22}-c_{12}c_{21}\right)u_{1}=0} ,
Applications Mass-action Law [ 2] Consider the following chemical pathway:
A + 2 B → k 1 C → k 2 3 D + E {\displaystyle {\ce {A + 2B ->[k_1] C ->[k_2] 3D + E}}}
where k 1 {\displaystyle k_{1}} and k 2 {\displaystyle k_{2}} are rate constants .
Then the mass-action law applied to species C {\displaystyle {\ce {C}}} gives the equation
d [ C ] d t = k 1 [ A ] [ B ] 2 − k 2 [ D ] 3 [ E ] {\displaystyle {\frac {d[C]}{dt}}=k_{1}[A][B]^{2}-k_{2}[D]^{3}[E]}
(where [ A ] {\displaystyle [A]} is a concentration of A etc.)
This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.