TB10Cs2H2 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecules that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB10Cs2H2 is predicted to guide the pseudouridylation of LSU5 ribosomal RNA (rRNA) at residue Ψ1173. [1]
Uridine is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, a ribofuranose) via a β-N1-glycosidic bond.
Pseudouridine is an isomer of the nucleoside uridine in which the uracil is attached via a carbon-carbon instead of a nitrogen-carbon glycosidic bond. It is the most prevalent of the over one hundred different modified nucleosides found in RNA. Ψ is found in all species and in many classes of RNA. Ψ is formed by enzymes called Ψ synthases, which post-transcriptionally isomerize specific uridine residues in RNA in a process termed pseudouridylation. Currently, about ∼ 9500 pseudouridine (Ψ) modifications have been identified in mammals and yeast and deposited in RMBase database.
The nucleolus is the largest structure in the nucleus of eukaryotic cells. It is best known as the site of ribosome biogenesis. Nucleoli also participate in the formation of signal recognition particles and play a role in the cell's response to stress. Nucleoli are made of proteins, DNA and RNA and form around specific chromosomal regions called nucleolar organizing regions. Malfunction of nucleoli can be the cause of several human conditions called "nucleolopathies" and the nucleolus is being investigated as a target for cancer chemotherapy.
TB9Cs3H2 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB9Cs3H2 is predicted to guide the pseudouridylation of LSU5 ribosomal RNA (rRNA) at residue Ψ1103.
TB6Cs1H1 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB6Cs1H1 is predicted to guide the pseudouridylation of LSU3 ribosomal RNA (rRNA) at residue Ψ380.
TB9Cs2H1 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB9Cs2H1 is predicted to guide the pseudouridylation of LSU3 ribosomal RNA (rRNA) at residue Ψ617.
TB10Cs2H1 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB10Cs2H1 is predicted to guide the pseudouridylation of LSU3 ribosomal RNA (rRNA) at residue Ψ1167.
TB10Cs1H3 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB10Cs1H3 is predicted to guide the pseudouridylation of SSU ribosomal RNA (rRNA) at residue Ψ40.
TB10Cs3H1 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB10Cs3H1 is predicted to guide the pseudouridylation of SSU ribosomal RNA (rRNA) at residue Ψ263.
TB10Cs3H2 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB10Cs3H2 is predicted to guide the pseudouridylation of LSU3 ribosomal RNA (rRNA) at residue Ψ397.
TB11Cs4H2 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB11Cs4H2 is predicted to guide the pseudouridylation of SSU ribosomal RNA (rRNA) at residue Ψ1907.
TB9Cs4H2 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB9Cs4H2 is predicted to guide the pseudouridylation of LSU3 ribosomal RNA (rRNA) at residue Ψ1336.
TB8Cs2H1 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB8Cs2H1 is predicted to guide the pseudouridylation of SSU ribosomal RNA (rRNA) at residue Ψ1113.
TB10Cs4H4 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB10Cs4H4 is predicted to guide the pseudouridylation of SSU ribosomal RNA (rRNA) at residue Ψ505.
TB6Cs1H4 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB6Cs1H4 is predicted to guide the pseudouridylation of LSU5 ribosomal RNA (rRNA) at residue Ψ824.
TB9Cs1H2 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB9Cs1H2 is predicted to guide the pseudouridylation of SSU ribosomal RNA (rRNA) at residue Ψ1619.
TB10Cs4H2 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB10Cs4H2 is predicted to guide the pseudouridylation of SSU ribosomal RNA (rRNA) at residue Ψ1186.
TB10Cs1H2 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB10Cs1H2 is predicted to guide the pseudouridylation of LSU5 ribosomal RNA (rRNA) at residue Ψ901.
TB6Cs2H1 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB6Cs2H1 is predicted to guide the pseudouridylation of SSU ribosomal RNA (rRNA) at residue Ψ1101.
TB10Cs4H3 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB10Cs4H3 is predicted to guide the pseudouridylation of LSU5 ribosomal RNA (rRNA) at residue Ψ1773.
TB6Cs1H2 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. The target TB6Cs1H2 guides is unknown.
TB9Cs2H2 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB9Cs2H2 is predicted to guide the pseudouridylation of LSU5 ribosomal RNA (rRNA) at residue Ψ1412.
TB10Cs4H1 is a member of the H/ACA-like class of non-coding RNA (ncRNA) molecule that guide the sites of modification of uridines to pseudouridines of substrate RNAs. It is known as a small nucleolar RNA (snoRNA) thus named because of its cellular localization in the nucleolus of the eukaryotic cell. TB10Cs4H1 is predicted to guide the pseudouridylation of LSU5 ribosomal RNA (rRNA) at residue Ψ2248.